
High performance in-kernel SDN/OpenFlow controller

Pavel Ivashchenko, Alexander Shalimov, Ruslan Smeliansky
Applied Research Center For Computer Networks

pivaschenko@arccn.ru, ashalimov@arccn.ru, rsmeliansky@arccn.ru

Abstract

This article demonstrates capabilities of the in-kernel openflow controller which leverages ability of the
contemporary multicore systems with reducing host network communication overhead in Linux OS. The mea-
surements show the in-kernel controller has throughput 4 times more and latency two times less that the existing
OpenFlow controllers.

1 Introduction/Motivation

SDN/Openflow is the most innovative technology in the area of computer networks of recent years [1]. It allows us
to automate and simplify network management: fine-grained flows control, observing the entire network, unified
open API to write your own network management program, and so on. All control decisions are done first in a
centralized controller and then moves down to overseen network’s switches. In other words, the controller is a heart
of SDN/OpenFlow network and its characteristics determine the performance of whole networks. The controller
throughput means how big and active our network can be in terms of switches and hosts. The response latency
directly affects network’s congestion time and end-user QoE.

The latest SDN/OpenFlow controllers performance evaluation [3] shows that the maximum throughput was
demonstrated by the Beacon OpenFlow controller [4] with 7 billions flow requests per second. However, this is not
enough and in data centers we need several times more performance [2]. According [6], for the small datacenters
with 100K hosts and 32 hosts/rack, the maximum flow arrival rate can be up to 300M with median rate around
10M and minimal rare around 1.5M. In the large-scale networks the cituation can be tremendously worse.

There are two non-mutually exclusive ways to cover the performance gap. The first ways is to use multiple
instances of controller collaboratively managing the network and forming a distributed control plane [2, 5]. But
this brings a lot of complexity and overheads on maintaining a consistent network view between all instances.

The second way is to improve single controller itself by leveraging ability of contemporary multicore systems
and by reducing existing bottlenecks and overheads. The network layer of OpenFlow Controllers is the most
time consuming part [2]: reading incoming OpenFlow messages from the NIC and communicating with OpenFlow
switches. For the last task the common approach is to use multithreading. One thread listens the socket for new
switch connection requests and distributes the new connections over other working threads. A working thread
communicates with the appropriate switches, receives flow setup requests from them and sends back the flow setup
rule. There are a couple of advanced techniques. For instance, Maestro distributes incoming packets using round-
robin algorithm, so this approach is expected to show better results with unbalanced load. The first task usually
relies on the runtime of chosen programming language. Let’s consider this problem in details.

From the system view, a OpenFlow controller is a TCP server running in Lunix userspace. Every system call
(malloc, free, read and write packet(s) from the socket, etc) leads to context switching between userspace and
kernel space that requires additional time. Approximately this time for FreeBSD Linux is 0.1ms and takes 10%
time for whole system call. Under the high load this leads to significantly time overhead. Moreover, the userspace
programs work in virtual memory that also require additional memory translation and isolation mechanism. These
issues can be avoid if the OpenFlow controller will reside in the Linux kernel.

In this paper, we presents a novel OpenFlow controller that works as a module inside the Linux kernel and has
fastest throughput and the lowest latency comparing with all existing OpenFlow controllers.

2 Arhitecture

Our openflow controller has 3 logical parts.

• Server

Server is a kernel thread. It listens socket, accepts new connections from switches and finds appropriate
backend‘s thread. Sever distributes connections between backend‘s threads evenly. Then it gives away
accepted to frontend.

• Frontend

1



Frontend checks switches for different errors, for example openflow version, correctness of openflow
messages such as hello, features reply. It checks correctness of headers for every messages in the input
buffer until a features reply is not sent. After that frontend checks uniqueness of datapath ID and writes
necessary information about switch to special data structure. If all verification is done, frontend gives
away connection to appropriate backed‘s thread.

• Backend

Number of backend’s threads set in config file. Backend is a final stage of connection‘s journey through
controller arhitecture. Backends work with switches and applications. They send and receive openflow
messages. Poll wait for some event on a file descriptors of switch‘s sockets. Then we read input buffer
and fill output buffer. Output buffer will be send if one is overflow or end the input buffer.

This three-tier architecture protects from unnecessary work high-speed backends.

3 Experimentation results

The figure 1 shows the maximum throughput for different number of available cores per one controller. The single
threaded controllers (Pox and Ryu) show no scalability across CPU cores. The performance of multithreaded
controllers increases steady in line for 1 to 6 cores, and much slower for 7-12 cores because of using hyper threading
technology (the maximum performance benefit of the technology is 40%).

The average response time of the controllers demonstrates insignicant correlation with the number of connected
hosts. For the average response time with one connected switch and 105 hosts see Figure 2. The smallest latency has
been demon- strated by In-kernel, MuL and Beacon controllers, while the largest latency is typical of python-based
controller POX.

Figure 1: The average throughput achieved with different number of threads (with 32 switches, 105

hosts per switch)(Intel(R) Xeon(R) CPU E5645 @ 2.40GHz)

In-Kernel 45
NOX 91
POX 323
Floodlight 75
Beacon 57
MuL 50
Maestro 129
Ryu 105

Table 1: The minimum response time (10−6 secs/ flow)

We compare performance of our In-kernel openflow controller and beacon with stress as flood(3M connections
per second). The controllers were 2 threads. Flood generated by cbench with special parameters. Beacon without
flood show 4M flows/sec, In-kernel - 16.9 M flows/sec. Performance beacon with flood attack is wane (1 M
flows/sec), but our controller show 16.7M flows/sec. (CPU E3-1240 V2 @ 3.40GHz)

2



References

[1] M. Casado, T. Koponen, D. Moon, S. Shenker. Rethinking Packet Forwarding Hardware. In Proc. of HotNets,
2008

[2] A. Shalimov, R. Smeliansky, On Bringing Software Engineering to Computer Networks with Software Defined
Networking, Proceeding of the 7th Spring/Summer Young Researchers’ Colloqium on Software Engineering
(SYRCoSE 2013), May 30-31, 2013, Kazan, Russia

[3] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, R. Smeliansky, Advanced Study of SDN/OpenFlow con-
trollers, Proceedings of the CEE-SECR13: Central and Eastern European Software Engineering Conference in
Russia, ACM SIGSOFT, October 23-25, 2013, Moscow, Russian Federation

[4] David Erickson, The Beacon OpenFlow Controller, Proceeding of the ACM SIGCOMM HOTSDN 13, Hong
Kong.

[5] Advait Dixit, Towards an Elastic Distributed SDN Controller, Proceeding of the ACM SIGCOMM HOTSDN
13, Hong Kong.

[6] T. Benson, A. Akella, D. Maltz, Network traffic characteristics of data centers in the wild, IMC, 2010

3


