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Abstract—We propose the use of infrared attenuated total reflectance (ATR) spectroscopy aboard landers for
contact astrobiological soil research on terrestrial planets. The method is based on the absorption bands
inherent to biological macromolecules (proteins, DNA/RNA, and carbohydrates). It is also applicable to
mineralogical studies of soil, dust, and atmospheric precipitation; the use of balloons (e.g., on Venus) adds
aerosols to this list. The optimal spectral range seems to be 2.5–25 μm; the optimal spectral resolution, about
10 cm–1.
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INTRODUCTION

ATR spectroscopy has been used in ground-based
laboratories for decades (for both mineralogical and
biological applications) but so far it was never used on
planetary space missions. This method makes it possi-
ble to obtain the absorption spectra of a thin layer
(about one wavelength) of a sample in contact with an
optical element, which we call here an ATR prism.
The typical wavelength range is from 2.5 to 25 μm, and
the spectral resolution is about 10 cm–1. The Space
Research Institute of the Russian Academy of Sci-
ences (IKI) has experience in creating miniature space
Fourier spectroradiometers with such parameters. For
astrobiological applications, it would be useful to aug-
ment the spectrometer with an infrared (IR) radiation
source and a number of disposable cells, each contain-
ing a built-in miniature ATR prism. The approximate
parameters of such an instrument would be as follows:
mass 3 kg, electric power consumption 9 W, single
spectrum acquisition 20 s, its data volume 0.4 kB. The
simplicity of the sample preparation and the possibil-
ity of varying study objects are among the advantages
of the ATR method especially important for planetary
lander applications. For example, a soil sample can be
piled directly onto the ATR prism.

The basic principle of ATR spectroscopy is
described, e.g., in [5] and is briefly illustrated in Fig. 1.

1 The article was translated by the authors.
2 This work has been done with the support of Program 1.7P of

the Russian Academy of Sciences.

IR radiation is directed to the side face of the ATR
prism, which is a polished plane-parallel plate made of
an IR-transparent material (Ge, ZnSe, KRS-5, etc).
The side faces are typically at an angle of 45° to the
main faces and are also polished. The radiation
reaches the upper face of the plate at an angle of inci-
dence θ large enough to provide total internal ref lec-
tion (TIR). At the TIR point, an electromagnetic wave
penetrates a bit into the neighboring medium, rapidly
decaying at a scale of about one wavelength (evanes-
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Fig. 1. Explanation of ATR spectroscopy (modified from
[17]). 
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cent wave). If the neighboring medium is a vacuum,
there will be no energy f low through the media inter-
face and the spectrum at the prism outlet will have the
same shape as at the inlet (to put it simply). However,
if the investigated material (having absorption bands)
is in contact with the working face of the ATR prism,
the corresponding photons of the evanescent wave will
be absorbed and the spectrum at the outlet will show
these bands.

The possible recording order of the ATR spectrum
of a studied material is as follows:

(1) acquisition of the reference spectrum, i.e., the
spectrum of a pure ATR prism;

(2) the studied material is put in contact with the
working face of the ATR prism;

(3) acquisition of the informative spectrum;
(4) spectrum (3) is divided by spectrum (1), result-

ing in the relative ATR spectrum in arbitrary units
from 0 to 1.

This is a self-calibrating method: the relative ATR
spectrum does not depend on the spectrum of incom-
ing radiation, the detector spectral curve, the elec-
tronic parameters, etc. It only depends on the absorp-
tion spectrum of the studied material.

APPLICATION OF ATR SPECTROSCOPY 
FOR STUDYING MINERALS

Vibrations of lattice atoms result in characteristic
absorption bands in mineral spectra [11, 26]. Their
fundamental frequencies and overtones typically cor-
respond to wavelengths >2.5 μm. In particular, in soil
studies by IR spectrometry, a range of 2.5–15 μm is
commonly used [3]. IR spectrometry makes it possible
to study the most important atomic groups and bond
types, adsorption and desorption of moisture and
gases, minerals with crystallites of any sizes, and
amorphous and organic components in mineral
media. We have studied a number of minerals with a
laboratory Fourier spectrometer with an ATR attach-
ment. To obtain well-pronounced spectra, it suffices
to use about 1 mm3 of a powdered mineral. The
smaller the grains, the better the absorption contrast.
It is best to use grains smaller than 0.1 mm.

Figure 2 shows spectra with absorption bands of
carbonates, borates, sulfates, phosphates, arsenates,
and silicates from [4] (a) and some of our results (b):
the relative ATR spectra of magnesite and hematite
powders, quite similar to the well-known spectra of
these minerals. Different libraries of the ATR spectra
of minerals are available on the Internet, e.g., [12, 22].

APPLICATION OF ATR SPECTROSCOPY 
FOR BIOLOGICAL INVESTIGATIONS

ATR spectroscopy is also employed for biological
research [9, 14, 27]. In particular, use this method was
proposed to differentiate bacterial cells of different

physiological status, as well as for studies of the resting
state of microbial cells in a pure culture [1].

Our task is to detect microorganisms in a native
mineralogical environment by means of ATR spec-
troscopy and to analyze the possibility of using this
technique in astrobiological searches.

Studies of extreme Earth habitats convincingly
indicate that once life emerged, it has shown a high
ability to adapt to varying environmental factors. The
limits of cell adaptation have not yet been elucidated.
Microorganisms and/or biological activity have been
found in Earth’s sediments and rocks to depths of
more than 5 km [18, 19], as well as in deep ocean bot-
tom sediments [2]. In ancient permafrost and the ice
of polar regions, numerous diverse microbial commu-
nities can remain viable for millions of years at nega-
tive temperatures (down to –50 to –80°C) under water
deficit conditions [7, 13, 15, 25]. In addition, the abil-
ities of microorganisms to metabolize and multiply at
temperatures above 100°C, to withstand high doses of
radiation [6, 10, 24], etc., are well known. Another
important feature of microorganisms is their ability to
become resting forms able to survive indefinitely in
unfavorable conditions and then reverse into a meta-
bolically active state. Natural environments can pro-
vide additional protection for microbial cells closely
interacting with the habitat [20]. This resistivity of
microorganisms to physical and chemical factors and
the level of our knowledge about extraterrestrial envi-
ronments argue for the possible existence of Earth-like
life. Today, astrobiological programs are included into
ongoing planetary missions [8, 23]. Spectral methods,
including IR spectrometry, are actively used to analyze
extraterrestrial soil.

The main biopolymers forming living cells (pro-
teins, nucleic acids, carbohydrates, lipids, etc.) have
characteristic absorption bands in the IR part of the
spectrum. In Fig. 3b, one can see absorption bands of
lipids, carbohydrates, nucleic acids (DNA/RNA), and
proteins. The protein absorption band Amide-I coin-
cides with the water band, making it difficult is use.
However, the protein absorption band Amide-II is
quite visible. The presence of water does not mask the
absorption bands of DNA/RNA and carbohydrates.
Here we show the relative ATR spectra of bacteria
from the genus Arthrobacter. Such bacteria are widely
distributed in soils and sediments. Representatives of
this genus are also found in different extreme habitats.
Their resistance to an unfavorable environment is
ensured by the proven ability to form cystlike resting
forms, making it possible to maintain cells viability in
the anabiotic state for a long time [20, 21].

ACTIVATION OF MICROORGANISMS 
ON THE ATR PRISM FACE

To distinguish the spectral features of microbial
cells from those of minerals is a big challenge for spec-
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troscopic soil studies. Direct analysis of native samples
makes it possible to see the biological absorption
bands, but they can be masked by mineral ones. More-
over, organic matter (proteins, nucleic acids) not
related to cells may be present in soils. That is why just
observation of absorption bands at the wavelengths of
biological absorption bands does not prove the pres-
ence of microorganisms. We have to observe the
dynamics, i.e., progressive deepening of biological
absorption bands due to the multiplication of micro-
organisms directly on the working face of the ATR
prism (so that they cover a larger and larger area of the
working face of the ATR prism).

We performed such experiments first with a labora-
tory culture of Rhodococcus sp., (Fig. 4a), then with a
permafrost sample from Antarctica (Fig. 4b). In the
latter case, a frozen sedimentary rock taken from the
depth of 1.5 m was used (Beacon Valley, 77°50´ S,
160°36´ E, 1270 m above sea level). It was dried to an
air-dry state. The total carbon content in the sample
was determined as close to zero (0–0.1%), while the
content of microorganisms was quite high. The total
number of bacterial cells before analysis was 3 ×
108 cells/g, of which 1 × 107 CFU/g yielded growth on
nutrient media. A detailed description of the sterile
selection, delivery, and storage of samples from Ant-

Fig. 2. IR spectra of minerals: (a) main absorption bands location for carbonates, borates, sulfates, phosphates, arsenates, and
silicates [4]; (b) relative ATR spectra of magnesite and hematite powders obtained in our laboratory (inset: photo of ATR prism
with heaped powder sample, volume of about 1 mm3). 
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Fig. 3. IR spectra of biological objects: (a) characteristic absorption bands of proteins (Amide-I and Amide-II), nucleic acids, and
lipids [16]; (b) relative ATR spectra of liquid water (solid line) and bacterium Arthrobacter sp. obtained in our experiments (dashed
line). 
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Fig. 4. Multiplication of microorganisms on working face of ATR prism: (a) bacterium Rhodococcus sp. (on sterile agarose depos-
ited onto ATR prism); (b) Antarctic permafrost. 
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arctic permafrost and of the location of their selection
are given in [13].

The Antarctic sample (about 0.03 cm3) was evenly
deposited onto the working face of the ATR prism.
Microbial succession was initiated by addition of a
sterile physiological solution (0.9% NaCl) containing
no organic substances. The succession of the micro-
bial community took place over 10 days. Due to this
process, the IR absorption bands (characteristic of
microorganisms) appeared and deepened with time
(Fig. 4b). Similarly, the dynamics of cell activation
and growth were studied with pure bacterial cultures.
In the spectrum of Rhodococcus sp. (Fig. 4a) during
the first day of growth, the Amide-II band was absent.
On day 5, this band appeared, and on day 9 it became
well pronounced. Figure 4b shows the deepening with
time of the Amide-II band due to multiplication of
microorganisms in the native soil sample. Thus, the
possibility of activation of soil sample microorganisms
directly on the working face of the ATR prism fur-
nishes additional proof of their presence.

CONCLUSIONS

Application of ATR spectroscopy aboard planetary
landers is promising for both mineralogical studies
and the search for possible extraterrestrial life (based
on proteins and DNA/RNA or just RNA).

The important advantages of this method are the
simplicity of sample preparation and the fact that the
sample can be located in any part of the ATR prism
working face (about 1 cm2)—it gives a signal regardless
the exact location. The larger the portion of the face
occupied by the sample, the greater the signal.

The experience and groundwork laid at IKI has
made it possible to create a space instrument that can
use the ATR method on planetary missions. Its
approximate parameters can be as follows: spectral
range from 2.5 to 25 µm, spectral resolution 10 cm–1,
mass of about 3 kg, electric power consumption 9 W,
one spectrum acquisition 20 s, its data volume 0.4 kB.

This instrument can be installed aboard a lander or
an atmospheric balloon (e.g., on Venus).
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