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Abstract
During gaze-based interaction, gaze provides both control and vi-
sual input. Although in simple tasks, like eye typing, these functions
are separated, more complex scenarios can lead to misinterpreta-
tion of user intent. In our study, we explored if machine learning
(ML) can aid in solving this problem. 15 participants played a gaze-
controlled game, where they could freely select screen objects with
a 500 ms dwell time. By applyingML to gaze features and contextual
information, we achieved a threefold reduction in false positives.
This study is the first to show how ML can enhance gaze-based
interaction in visually demanding environments.
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1 Introduction
Gaze-based interaction is increasingly used but remains prone to
the Midas touch problem [Jacob 1990], where using gaze for both
perception and control results in unintended actions. Solutions like
longer dwell times or additional confirmation via saccades or blinks
reduce fluency and increase effort [Majaranta et al. 2019]. Machine
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learning (ML) has recently been used to predict user intent in gaze-
based interaction [Isomoto et al. 2022]. Unfortunately, the reported
performance may be biased, as the target search task used in this
study typically induce longer dwells and greater pupil dilation than
non-target viewing [Jangraw et al. 2014].

An effective test of gaze-based control should allow natural be-
havior in dynamic, visually rich environments and support class
labeling without disrupting gameplay — criteria met by the Eye-
Lines game [Shishkin et al. 2016]. We previously evaluated an ML
approach for intent prediction during this game in offline simulation
[Shevtsova et al. 2023]. In the current study, we enhanced intention
recognition by incorporating a context-based algorithm, shown to
improve interaction (e.g., autocomplete in gaze typing). We tested
the combined classifier in a real-time application and evaluated
whether the ML approach improves gaze-based interaction.

2 Methods
Participants: Data were collected from 15 naïve healthy volun-

teers (age: 25 ± 6 years, mean ± SD) who provided informed con-
sent. All experimental procedures conformed to the Declaration of
Helsinki and were approved by the local ethical committee.

Task: Participants played the gaze-controlled EyeLines game
[Shishkin et al. 2016], selecting colored balls and setting their new
positions on a 7×7 grid to form lines of the same color. Completed
lines disappeared; otherwise, new balls were randomly added. The
game ended when the board filled or after 8 minutes.

Gaze-based control: Eye tracking was performed at 1000 Hz us-
ing the EyeLink 1000 Plus. A selection was triggered when gaze
remained within 2.3° for at least 500 ms – a behavior referred to as
a “dwell,” which could include multiple fixations – with the dwell
center falling within 1.3° of the target’s center. Two gaze-based
control modes were tested: Mode D (all dwells triggered actions)
and Mode C (a classifier decided if they were relevant).

Experimental design: Participants played three games in each
mode on both days. On the first day (familiarization), Mode D was
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always given first. On the second day (performance evaluation and
mode comparison), the order of modes was randomized.

Classification algorithm: In Mode C, dwells were classified based
on the averaged probability p from two trained models: a gaze
classifier and a contextual classifier. Dwells with p > threshold 1
were deemed as intentional and triggered ball selection, while those
with p < threshold 2 were considered spontaneous and ignored.
Approximately 30% of dwells fell between the thresholds and were
labeled as “uncertain”; these triggered an action only if the dwell
persisted until a 700 ms threshold was reached.

Classifier training: Support Vector Machine models with an RBF
kernel were used. On the first day, models were trained on prior
study data [Shevtsova et al. 2023]. Individual models were then
trained on the collected data with randomly balanced classes and
applied on the second day.

Gaze classifier: Gaze micro-behavior features, as described in
[Shevtsova et al. 2023], were utilized. Features included coordinate
variance and spread, microsaccade count and amplitude (all in
overlapping 50 ms windows), and distance to the nearest ball (non-
overlapping 50 ms). The Recursive Feature Elimination algorithm
was employed to select the top seven features for each model.

Contextual classifier: Contextual classifier features captured a
ball’s position relative to others on the field. Based on 50,000 moves
from another prior EyeLines study [Vasilyev et al. 2024], we man-
ually identified features that could influence the likelihood of a
player selecting a particular ball: some features (14) indicated a
ball’s role in forming or enabling same-colored lines, while others
(7) reflected the general ball mobility on the board.

Ground truth: The true dwell labels were inferred from actions:
if a selected ball was moved immediately after selection, the dwell
was classified as intentional; if not, it was deemed spontaneous.

Performance assessment: All analyses utilized second-day data.
Classification performance was evaluated using the True Positive
Rate (TPR), True Negative Rate (TNR), and Balanced Accuracy (BA).
Gaze control effectiveness was assessed by the command rate (the
number of intentional moves per minute), the number of actions
required to remove one ball (including ball selection, movement,
deselection, or cancellation of an unintended move) and the total
game time (a percentage of the 8-minute game duration).

3 Results
Classifier performance: To assess whether the combined classifier

outperformed individual models, a Friedman test with post-hoc
Dunn’s correction was applied to offline results. As shown in Figure
1 (a, b), both the gaze and contextual classifiers performed worse
than the combined model (g+c), which achieved higher true positive
rates, reduced false negative errors, and maintained a lower false
positive rate, as evidenced by ROC curves (g+c vs. gaze: 𝜒2(2)=–21,
p<0.001; g+c vs. contextual: 𝜒2(2)=–24, p<0.0001).

Efficiency of the gaze-based control: Mode C reduced false pos-
itives nearly threefold compared to Mode D (Wilcoxon test for
FP/(FP+TP): W(15)=120.0, p<0.0001). Command rate remained sim-
ilar across both modes (Student’s t-test: t(14)=1.08, p=0.30). Mode

C enabled participants to play longer (Wilcoxon test: W(13)=-73.0,
p=0.0078) and required fewer actions to remove the same number
of balls (W(15)=110.0, p=0.0006), as shown in Figure 1 (c).

Figure 1: Classifier metrics (a), ROC curves (b) and Gaze con-
trol effectiveness (c). g+c (0.5): fixed thresholds; g+c (thr):
adjustable thresholds. **p<0.01, ***p<0.001.

4 Discussion
This study demonstrates that ML applied online can enhance both
the effectiveness and efficiency of gaze-based interaction in realistic
settings. The EyeLines game served as a testbed where gaze was
used intensively for both input and control, natural behavior was
allowed, and performance was assessed without explicit labeling.

We introduced a combined algorithm that integrates gaze and
contextual classifiers. While context features were game-specific,
they are adaptable to other tasks where user behavior patterns
can be observed and formalized. Averaging the classifiers’ prob-
abilities yielded better performance than either model alone. In
low-confidence cases — opposing predictions or values near 0.5 —
a longer time threshold was applied to reduce errors.

ML-enhanced Mode C improved interaction, with longer game
durations and fewer actions per ball removal than dwell-only Mode
D. Presumably, reducing unintended ball selections allowed players
to make more deliberate moves. Although the command rate did
not increase, likely because the dwell time in Mode D was already
optimized for quick selections, the improvements in Mode C remain
both significant and promising.

Gaze-based interaction systems pose potential privacy risks;
however, all processing can be performed locally, and data may be
discarded after classifier training, minimizing exposure.

Our findings highlight that ML can help address the Midas touch
problem in gaze-based systems.
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