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Abstract. Let f be a homeomorphism of a compact manifold M . The Krylov–Bogoloubov
theorem guarantees the existence of a measure that is invariant with respect to f . The set
of all invariant measures M( f ) is convex and compact in the weak topology. The goal
of this paper is to construct the set M( f ). To obtain an approximation of M( f ), we use
the symbolic image with respect to a partition C = {M(1), M(2), . . . , M(n)} of M . A
symbolic image G is a directed graph such that a vertex i corresponds to the cell M(i)
and an edge i→ j exists if and only if f (M(i)) ∩ M( j) 6= ∅. This approach lets us apply
the coding of orbits and symbolic dynamics to arbitrary dynamical systems. A flow on
the symbolic image is a probability distribution on the edges which satisfies Kirchhoff’s
law at each vertex, i.e. the incoming flow equals the outgoing one. Such a distribution
is an approximation to some invariant measure. The set of flows on the symbolic image
G forms a convex polyhedron M(G) which is an approximation to the set of invariant
measures M( f ). By considering a sequence of subdivisions of the partitions, one gets
sequence of symbolic images Gk and corresponding approximations M(Gk) which tend
to M( f ) as the diameter of the cells goes to zero. If the flows mk on each Gk are chosen
in a special manner, then the sequence {mk

} converges to some invariant measure. Every
invariant measure can be obtained by this method. Applications and numerical examples
are given.

1. Introduction
Let f : M→ M be a homeomorphism of a compact manifold M ⊂ Rd that generates the Q1

discrete dynamical system { f k
: k ∈ Z}. Let C = {M(1), . . . , M(n)} be a finite covering

of M . The set M(i) is called the cell (or box) of index i . Let G be a directed graph with
vertices {i} corresponding to the cells {M(i)}. Two vertices i and j of G are connected
by the directed edge i→ j if and only if f (M(i)) ∩ M( j) 6= ∅. The graph G is called the
symbolic image of f with respect to the covering C .
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2 G. Osipenko

The notion of symbolic image of a dynamical system was introduced in [12]. It is
a powerful tool for investigating global dynamics and the structure of orbits. It enables
us to apply the coding of orbits and symbolic dynamics to arbitrary dynamical systems.
Symbolic image methods and their applications are discussed in detail in [14].

Here we consider the construction of invariant measures based on the concept of
symbolic image. The Krylov–Bogolubov theorem [10] guarantees the existence of a
probability measure µ that is invariant with respect to f . The collection of all f -invariant
measures M( f ) forms a convex compact set in the weak topology [9]. Ulam [17] proposed
a method for constructing a sequence of measures by approximation of the Frobenius–
Perron operator; such a sequence converges to an invariant measure. In particular, Sinai–
Bowen–Ruelle (SBR) measures were constructed via the Ulam method in a variety of
settings [4–6]. The paper [3] describes numerical methods and results relating to the
approximation of SBR measures. However, despite the fact that any map f has a set
of invariant measures M( f ), it is not necessarily the case that f will have SBR measure.
Extreme points of the convex set M( f ) are ergodic measures.

Our aim in this paper is to construct the set M( f ) for any f . To obtain an approximation
of M( f ), we use the notion of symbolic image with respect to a partition of M . In the
general case, there are no restrictions on the properties of the cells. However, we will focus
on coverings C with connected Lebesgue-measurable cells. In numerical experiments,
these cells are parallelepipeds that intersect in the boundary discs. When the covering C
is a partition, the cells are semi-open parallelepipeds and the boundary discs belong to one
of the cells.

To understand the proposed construction, suppose that the transformation f has an
invariant measure µ; then each edge i→ j of the symbolic image G gets the measure

mi j = µ(M(i) ∩ f −1(M( j)))= µ( f (M(i)) ∩ M( j)), (1)

where the second equality comes from the invariance of µ. In addition, we haveQ2 ∑
k

mki =
∑

k

µ( f (M(k)) ∩ M(i))= µ(M(i))=
∑

j

µ(M(i) ∩ f −1(M( j)))=
∑

j

mi j .

The sum
∑

k mki is called the incoming flow at vertex i , and the sum
∑

j mi j is the
outgoing flow from i . The equality ∑

k

mki =
∑

j

mi j (2)

can be treated as a Kirchhoff-type law. In addition, we have the equality∑
i j

mi j = µ(M)= 1, (3)

which means that the distribution mi j is normalized. So an invariant measure µ generates
on the symbolic image a distribution mi j which satisfies the conditions (2) and (3). This
observation leads us to the following definition.

Definition 1. Let G be a directed graph. A distribution {mi j } on the edges {i→ j} is called
a flow on G if:
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Symbolic images and invariant measures of dynamical systems 3

• mi j ≥ 0;
•

∑
i j mi j = 1;

•
∑

k mki =
∑

j mi j for each vertex i ∈ G.

The last property may be thought of as invariance of the flow. The second property, i.e.
normalization, can be rewritten in the form m(G)= 1, where the measure of G is the sum
of the measures of its edges. In graph theory, such a distribution is called a closed or
invariant flow. For the flow {mi j } on G, we define the measure of the vertex i to be

mi =
∑

k

mki =
∑

j

mi j .

In this case,
∑

i mi = m(G)= 1. Thus, each invariant measure generates a flow on the
symbolic image. Now consider the converse construction. Let m = {mi j } be a flow on a
symbolic image G. Then a measure µ∗ can be defined by the formula

µ∗(A)=
∑

i

miv(A ∩ M(i))/v(M(i)), (4)

where v is a normalized Lebesgue measure. It is assumed that v(M(i)) 6= 0 for each cell.
By the above definition, the measure of M(i) coincides with the measure of the vertex i :

µ∗(M(i))= mi .

The inequalities ∑
k:M(k)⊂A

mk ≤ µ
∗(A)≤

∑
i :M(i)∩A 6=∅

mi

follow from (4). They may be treated as lower and upper estimates for the invariant
measure constructed through the distribution (flow) m. In general, the constructed
measureµ∗ is not invariant with respect to f . However, as will be shown later, this measure
is an approximation of an invariant measure.

The set of flows {m = (mi j )} on the symbolic image G forms a convex
polyhedron M(G) which is an approximation of the set of invariant measures M( f ).
By considering a sequence Ck of subdivisions of the partitions, one gets a sequence of
symbolic images Gk and corresponding approximations M(Gk) which tend to M( f )
as the diameters of the cells go to zero. This technique allows us to get an individual
measure. If the flows mk on each Gk are chosen in a special manner, then the sequence
{mk
} converges to some invariant measure µ. Moreover, every invariant measure can be

obtained by this method.

2. Flows on graphs
Let G be a directed graph with n vertices. Consider the space M(G)= {m} of all flows
on G. Let m1

= {m1
i j } and m2

= {m2
i j } be two flows, and let α, β ≥ 0 be such that

α + β = 1. Then it is easy to check that the distribution

m = αm1
+ βm2

= {αm1
i j + βm2

i j }

is a flow as well. In this case we say that the flow m is the sum of the flows m1 and m2

with weights α and β. Thus, the space of all flows M(G) is a convex set.
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4 G. Osipenko

Let us investigate the structure of M(G). Suppose that ω = (i1→ i2→ · · · → ik→

i1) is a simple periodic path (cycle); this means that all vertices {it : t = 1, 2, . . . , k} are
different. To construct a simple flow m(ω) located on the cycle, we put mi j = 1/k for all
edges from ω and mi j = 0 for all other edges. It is evident that m(ω) is invariant, unique,
located on the cycle ω and not decomposable into the sum of other flows. In other words,
m(ω) is an extreme point of the set M(G). Since the number of vertices is finite, the
number of simple flows (cycles) is finite as well.

PROPOSITION 1. Any flow m ∈M(G) can be decomposed into the sum of simple flows.

Proof. Let m = {mi j } be a flow on G. Consider a set of the edges D = {i→ j} such that
mi j > 0. Kirchhoff’s law (2) holds on this set. It follows that there is a path of infinite
length, ω∗ ∈ D, that goes through each edge from D. In fact, if there is an edge k→ i with
mki > 0, then by (2) there must be an edge i→ j with mi j > 0; hence we can continue the
path in D. Since G has a finite number of edges, ω∗ contains a periodic path ω which can
be considered as a simple one. Let p be the minimal period of ω and define

mmin =min{mi j | i→ j ∈ ω}> 0

to be the minimal measure of edges from ω. Let α > 0 be a number such that

α = pmmin or α/p = mmin.

We construct a new distribution m∗ on the edges of G. For each edge i→ j in ω we
define a new measure m∗i j = mi j − α/p ≥ 0. If an edge i→ j is not included in ω, then
m∗i j = mi j . It is clear that the sum of measures of all edges is

∑
i j m∗i j = 1− α.

Let us show that Kirchhoff’s law (2) holds for the distribution m∗. If a vertex i is not
in ω, then m∗i j = mi j , m∗ki = mki and the equality (2) holds. Let i lie in the simple cycle ω.
Then, in ω, there exists an edge k∗→ i coming in at i and an edge i→ j∗ going out from i ;
all other edges from ω are free of connection with the vertex i , since ω is a simple cycle.
In this case, the left- and right-hand sides of the equality∑

k

mki =
∑

j

mi j (5)

contain, respectively, the terms mk∗i and mi j∗ generated by the edges k∗→ i and i→ j∗;
all the other terms are free of connection with the cycle ω. Thus we have

mk∗i +
∑
k 6=k∗

mki = mi j∗ +
∑
j 6= j∗

mi j . (6)

Subtracting α/p = mmin from both sides of (6), we get the equality

mk∗i − α/p +
∑
k 6=k∗

mki = mi j∗ − α/p +
∑
j 6= j∗

mi j

or ∑
k

m∗ki =
∑

j

m∗i j .
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Symbolic images and invariant measures of dynamical systems 5

It follows that the new distribution m∗ satisfies Kirchhoff’s law but that the set of edges
D∗ = {i→ j} with m∗i j > 0 does not contain some edges from the cycle ω, since

m∗min = mmin − α/p = 0

on ω.
By repeating this process of eliminating simple cycles from D, we obtain, in a finite

number of steps, the zero distribution. In this case, the initial flow can be represented in
the form

m =
∑
ω

αωmω,

where αω ≥ 0, mω is a simple flow, and the sum is taken over all simple cycles. It follows
from the equality m(G)= mω(G)= 1 that

∑
ω αω = 1. 2

Remark. It follows from the proof that the measure mi j may be positive on an edge i→ j
when a periodic path passes through it.

A vertex i is called recurrent if a periodic path passes through it. Two recurrent
vertices i and j are equivalent if there is a periodic path that contains both i and j . The
set of recurrent vertices is decomposed into classes of equivalent recurrent vertices, called
strongly connected components in graph theory. The strong components of a symbolic
image generate an isolating neighborhood of the chain-recurrent set of a dynamical
system [14]. It is known [9] that an invariant measure equals zero outside the chain-
recurrent set. Hence, to construct invariant measures, it is enough to study an isolated
component of the chain-recurrent set. Because of this, without loss of generality we can
suppose that the graph G consists of a single strong component.

It follows from Proposition 1 that the family of flows M(G) is a convex polyhedron
which is the hull of the simple flows. This means that any flow can be constructed by
the following method. Let P = {ωz} be the set of all simple cycles and {mz

i j } the set of
simple flows. The set of simple flows is finite and each simple flow is uniquely defined. By
Proposition 1, any flow m = {mi j } is determined by a collection of values az ≥ 0 such that∑

z az = 1, in which case mi j =
∑

z azmz
i j . The coefficients {az} are called the weights of

{ωz}. Consequently, the flow m can be represented by a point on the standard simplex

1=

{
a ∈ RN

∣∣∣ az ≥ 0,
∑

z
az = 1

}
,

where N is the number of simple cycles on G. The method of construction using all
simple cycles can require a lot of computation time, since, as a rule, the number of all
simple cycles is huge. For example, the full graph (in which each vertex is connected to
every one) with n vertices has n2 edges and N = 2n

− 1 simple cycles. Of course, we can
use a partial collection of the cycles by setting the weights of the untapped cycles to zero.

Definition 2. Let Q and G be directed graphs; then s : Q→ G is said to be a mapping of
the graphs (or graph mapping) if it transforms the vertices and edges of Q into the vertices
and edges of G in a consistent way. In other words, if k and l are vertices of Q between
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6 G. Osipenko

which there is an edge k→ l, and if s(k)= i and s(l)= j , then the edge i→ j exists
in G and s(k→ l)= i→ j . The converse must hold as well: if s(k→ l)= i→ j , then
s(k)= i and s(l)= j.

A graph mapping generates a mapping of (admissible) paths, and a periodic path is
transformed into a periodic path. It should be noted that under such a transformation the
period may decrease. Recurrent vertices are transformed into recurrent ones and equivalent
recurrent vertices are transformed into equivalent recurrent vertices [14]. Hence, strong
components are transformed into strong components.

PROPOSITION 2. Let Q and G be directed graphs, let s : Q→ G be a mapping of the
graphs and suppose that there exists a flow m on Q. Then, on G, the flow m∗ = s∗(m) is
generated such that the measure of edge i→ j ∈ G is

m∗i j =
∑

s(p→q)=i→ j

m pq ,

where the sum is taken over all edges p→ q which are transformed into i→ j. If an edge
i→ j does not have a preimage, then m∗i j = 0.

Proof. It is enough to check two of the properties of flow for m∗. Since summation over all
vertices of G coincides with summation over all vertices of Q, the normalization property
holds: ∑

i j

m∗i j =
∑
pq

m pq = 1.

To check the invariance property, we fix a vertex i ∈ G. If i does not have a preimage, i.e.
if s−1(i)= ∅, then both incoming edges and outgoing ones do not have preimages either.
Hence, the measure equals zero and the invariance condition holds in i . If s−1(i) 6= ∅, we
consider all vertices p in the preimage s−1(i). The invariance condition is valid for each
vertex p, so that ∑

r
mr p =

∑
t

m pt .

By summing over p ∈ s−1(i) and taking into account the fact that m∗rl = 0 for edges r→ l
with s−1(r→ l)= ∅, we get the desired equality∑

k

m∗ki =
∑

j

m∗i j

for i ∈ G. 2

PROPOSITION 3. Suppose that an N-periodic path ω exists on the graph G. Then, on G,
there is a flow m∗ such that m∗i j = ki j/N, where ki j is the number of passages of ω through
the edge i→ j .

Proof. Let ω = {i1→ i2→ · · · → iN → i1}. Construct the graph Q consisting of one
simple cycle of period N , i.e. let Q = {1→ 2→ · · · → N → 1}. On Q there exists a
unique flow m such that m pq = 1/N . Let the mapping s : Q→ G stack the cycle Q on the
periodic path ω, that is, s(k)= ik . According to Proposition 2, a flow is generated on G

Marked Proof Ref: 40341 May 26, 2009
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Symbolic images and invariant measures of dynamical systems 7

such that the measure of edge i→ j is the sum of the measures of the edges in s−1(i→ j);
in other words, m∗i j = ki j/N , where ki j is the number of passages of ω through the edge
i→ j . 2

Let G consist of one strong component; then any two vertices are connected by an
admissible path. Hence there exists a periodic path � passing through all vertices. The
path � can be called ‘dense on vertices’. According to Proposition 3, there is a flow
m = {mi j } on G with positive measure mi =

∑
j mi j > 0 for each vertex. Similarly, there

exists a periodic path �∗ passing through each edge; this path �∗ can be called ‘dense
on edges’. Evidently, a path that is dense on edges is dense on vertices. According to
Proposition 3, �∗ generates a flow with mi j > 0 on each edge i→ j . Thus, on any graph
there exists a flow which is positive on each recurrent vertex or edge.

PROPOSITION 4. Suppose that on G there exists a family of periodic paths ω1, . . . , ωr

with periods p1, . . . , pr . Set N = p1 + · · · + pr . Then there exists a flow m on G such
that mi j = ki j/N, where ki j is the number of passages of the paths ω1, . . . ωr through the
edge i→ j .

Proof. The proof of this proposition essentially repeats the proof of Proposition 3. Let us
assume the hypotheses of the proposition. Note that Proposition 2 does not require that the
graphs G and Q be connected. Construct the graph Q consisting of the disconnected union
of r simple cycles �1, . . . , �r with periods p1, . . . , pr ; then Q has N vertices and N
edges, where N = p1 + · · · + pr . It is easy to check that on Q there is a flow m∗ with
the measure of edges given by m∗pq = 1/N . The mapping s : Q→ G stacks the cycles
�1, . . . �r on the periodic paths ω1, . . . , ωr , respectively. According to Proposition 2,
the measure of edge i→ j is the sum of the measures of its preimages, i.e. mi j = ki j/N
where ki j is the number of passages of the paths ω1, . . . ωr through the edge i→ j . 2

Proposition 4 may be generalized as follows.

PROPOSITION 5. Suppose that on G there exists a family of periodic paths ω1, . . . , ωr

with periods p1, . . . , pr . Then there exists a flow m on G such that

mi j =

r∑
t=1

αt k
t
i j/pt ,

where αt ≥ 0,
∑

t αt = 1, and kt
i j is the number of passages of the path ωt through the

edge i→ j .

Proposition 4 can be obtained from Proposition 5 by taking αt = pt/N , N =
∑

t pt . It
follows from Propositions 2 and 5 that any flow in M(G) can be obtained as described in
Proposition 5.

3. Invariant measures and flows on the symbolic image
Consider a homeomorphism f : M→ M , a measured partition C and the symbolic
image G generated by C . The maximal diameter of cells of the partition C will be denoted
by d . Let us study the space of flows M(G) under successive subdivisions of C . Let the
partition C be subdivided, i.e. divide each cell M(i) into cells M(i1), M(i2), . . . such that
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8 G. Osipenko

M(i)=
⋃

k M(ik). Thus we obtain a new partition NC and a new symbolic image NG,
with {(ik)} as the indices of vertices. The natural mapping s : NG→ G has a very simple
form: s(ik)= i . This mapping is a mapping of directed graphs, that is: if on NG there is
an edge (ik)→ ( jl), then on G there exists the edge i→ j . The mapping s allows us to
transfer any flow on NG to the flow on G:

s∗ :M(N G)→M(G),

as was described in the previous section. It is clear that, in general, s∗(M(NG)) 6=M(G).

Definition 3. Two flows m ∈M(NG) and m∗ ∈M(G) are said to be consistent
if s∗(m)= m∗.

Consider successive subdivisions C1, C2, C3, . . . such that the maximal diameters
of the partitions, d1, d2, d3, . . . , tend to zero. Such a sequence generates a sequence
of symbolic images G1, G2, G3, . . . and mappings s : Gk→ Gk−1 and s∗ :M(Gk)→

M(Gk−1). Thus we obtain the sequences

G1
s
←− G2

s
←− G3

s
←− . . . .

and
M(G1)

s∗
←−M(G2)

s∗
←−M(G3)

s∗
←− . . . .

The mapping f : M→ M can be treated as an infinite graph with vertices x ∈ M and
edges x→ f (x). For any symbolic image G, there is a mapping s : M→ G of the form
s(x)= {i | x ∈ M(i)}, i.e. a point x is mapped to the index of the cell that contains x . This
mapping is a mapping of directed graphs. We obtain a sequence of the form

G1
s
←− G2

s
←− G3

s
←− · · ·

s
←− { f : M→ M}. (7)

For any symbolic image G, there exists a mapping s∗ :M( f )→M(G) given by the
formula

s∗(µ)= m = {mi j = µ(M(i) ∩ f −1(M( j)))},

where M(i) and M( j) are cells of the symbolic image G. The sequence (7) generates the
sequence

M(G1)
s∗
←−M(G2)

s∗
←−M(G3)

s∗
←− · · ·

s∗
←−M( f ). (8)

Suppose that on each symbolic image Gk there is a flow mk
∈M(Gk) and that these flows

are consistent, i.e.
s∗(mk+1)= mk .

By using Lebesgue measure we construct the measure µk on M for each k:

µk(A)=
∑

i

mk
i v(A ∩ M(i))/v(M(i)), (9)

where A is a measured set, the M(i) are the cells of Ck and v is Lebesgue measure
normalized on M . Therefore, we get the sequence of measures {µk} on the manifold M .
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Symbolic images and invariant measures of dynamical systems 9

THEOREM 1. Consider successive subdivisions of the partitions Ck with maximal
diameters dk→ 0. If mk is a consistent sequence of flows on the symbolic images Gk ,
then on M there exists a f -invariant measure µ such that

µ= lim
k→∞

µk,

where the convergence is considered in the weak topology.

Proof. Let mk
= {mk

i j } be a consistent sequence of flows on the symbolic images Gk . Let φ
be a continuous function on the compact set M and let Ck = {M(i)}k be a partition of M .
To each cell M(i) we ascribe the measure mk

i of the vertex i ∈ Gk . Take a point xi ∈ M(i)
and construct the integral sum

Fk(φ)=
∑

i

φ(xi )m
k
i .

We shall show that the limit
lim

k→∞
Fk(φ)= F(φ) (10)

exists. It is enough to show that Fk(φ) is Cauchy sequence. Let Cl , l > k, be a subdivision
of the partition Ck so that the cells M(ir) ∈ Cl , r = 1, 2, . . ., form a partition of the cell
M(i) ∈ Ck . Since the sequence of flows is consistent, we have

mk
= s∗(ml)

and
mk

i =
∑

r
ml

ir , (11)

where mir is the measure of the cell M(ir) ∈ Cl (or of the vertex (ir) ∈ Gl ). Let us estimate
the difference

|Fk(φ)− Fl(φ)| =

∣∣∣∣∑
i

φ(xi )m
k
i −

∑
ir

φ(xir )m
l
ir

∣∣∣∣.
Taking into account the equality (11) and the uniform continuity of φ on the compact set M ,
we get

|Fk(φ)− Fl(φ)| =

∣∣∣∣∑
ir

(φ(xi )− φ(xir ))m
l
ir

∣∣∣∣≤∑
ir

|φ(xi )− φ(xir )|m
l
ir

≤ sup
|x−y|≤dk

|φ(x)− φ(y)|
∑

ir

ml
ir = α(dk),

where α(d) is the modulus of continuity of the function φ and dk is the maximal diameter
of Ck . Since α(d)→ 0 as d→ 0, the sequence Fk(φ) is a Cauchy sequence and therefore
the limit (10) exists.

In the same way, we can show that this limit does not depend on the choice of xi ∈ M(i).
Thus, the linear functional F(φ) is well-defined. It is bounded, because |F(φ)| ≤ supM |φ|

and F(φ)≥ 0 as φ > 0. According to the Riesz representation theorem [9], there exists a
measure µ such that

F(φ)=
∫

M
φ dµ.
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10 G. Osipenko

Since the measure µk is defined according to the formula (9), the measure µk on a
cell M(i) differs from Lebesgue measure by a constant factor, and the measure of each
cell µk(M(i))= mk

i coincides with the measure of the vertex i ∈ Gk . Next, we show that

lim
k→∞

µk = µ

in the weak topology. It suffices to show that for any continuous function φ,∫
M
φ dµk→

∫
M
φ dµ

as k→∞. By the mean value theorem for each cell M(i), there exists a point x∗i in the
closure M(i) such that∫

M(i)
φ dµk = φ(x

∗

i )µk(M(i))= φ(x
∗

i )m
k
i .

Hence ∫
M
φ dµk =

∑
i

∫
M(i)

φ dµk =
∑

i

φ(x∗i )m
k
i .

So, it is enough to show that

lim
k→∞

∑
i

φ(x∗i )m
k
i = lim

k→∞

∑
i

φ(xi )m
k
i ,

where |x∗i − xi | ≤ dk . This can be proved in the same way as above by using the modulus
of continuity of the function φ.

It is known [9] that the invariance of a measure µ with respect to f follows from the
equality ∫

M
φ dµ=

∫
M
φ( f ) dµ,

where φ is any continuous function on M . Consider the integral sum Fk(φ)=∑
i φ(xi )mk

i , where
mk

i =
∑

j

mk
i j =

∑
r

mk
ri .

We have
Fk(φ)=

∑
i

φ(xi )
∑

r
mk

ri =
∑

ir

φ(xi )m
k
ri .

In each term φ(xi )mk
ri , we replace the point xi by a point xri ∈ f (M(r)) ∩ M(i) and get

Fk(φ)=
∑

ir

φ(xri )m
k
ri +

∑
ir

(φ(xi )− φ(xri ))m
k
ri =

∑
ir

φ(xri )m
k
ri + ε

∗,

where ε∗ is estimated through the modulus of continuity of φ and ε∗(dk)→ 0 as k→∞.
For each point xri ∈ f (M(r)) ∩ M(i) there exists a point zri ∈ M(r) ∩ f −1(M(i)) such
that f (zri )= xri , i.e. zri = f −1(xri ). We therefore have

Fk(φ)=
∑

ir

φ( f (zri ))m
k
ri + ε

∗,
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Symbolic images and invariant measures of dynamical systems 11

where all points zri , i = 1, 2, . . ., lie in M(r). Let us replace these points by a single point
zr ∈ M(r). We obtain the equalities

Fk(φ) =
∑

ir

φ( f (zr ))m
k
ri +

∑
ir

(φ( f (zri ))− φ( f (zr )))m
k
ri + ε

∗

=

∑
r
φ( f (zr ))

∑
i

mk
ri + ε

∗∗
+ ε∗ =

∑
r
φ( f (zr ))m

k
r = Fk(φ( f ))+ ε∗∗ + ε∗,

where ε∗∗ is estimated through the modulus of continuity of φ and φ( f ), and ε∗∗(dk)→ 0
as k→∞. Passing to the limit as k→∞, we obtain the equality

F(φ)= F(φ( f )),

which says that the measure µ is f -invariant, as desired. The proof of the theorem is thus
complete. 2

As indicated earlier, according to (1) each invariant measure µ generates a sequence of
flows mk on the symbolic images for any sequence of subdivisions C1, C2, C3, . . .; it is
easy to verify that the sequence is consistent. The above theorem guarantees the converse,
namely that each consistent sequence of flows mk on the symbolic images Gk with dk→ 0
generates an invariant measure.

COROLLARY 1. Every invariant measure µ can be obtained by the method described in
Theorem 1.

So, an invariant measure and a consistent sequence of flows are interconvertible.
Now we shall study sequences of flows which are not consistent. Consider a sequence
of symbolic images G1, G2, . . . G t , . . . of the homeomorphism f with respect to a
sequence of subdivisions C1, C2, . . . , Ct , . . . , with dt → 0 as t→∞. Fix a flow mt

on each symbolic image G t . Using Lebesgue measure for mt , we construct a sequence
of measures µt on M by (9). On each symbolic image Gτ we define the sequence
of flows {mk,τ

: k = 0, 1, . . .} as the projection of the flows mτ+k via the mapping s∗ :
M(Gτ+k)→M(Gτ ). For the space of flows on G, we introduce the distance function
ρ(m1, m2)=

∑
i |m

1
i − m2

i |, where m∗i is a measure of the vertex i (or the cell M(i)).

Definition 4. A sequence of flows {mt
} is said to converge if the sequence of projections

{mk,τ
} converges in the distance ρ on each Gτ as k→∞.

THEOREM 2. If the sequence of flows {mt
} converges, then the corresponding sequence of

measures {µt } converges to an invariant measure in the weak topology.

Proof. On each symbolic image Gτ we fix the flow m∗,τ = limk→∞ mk,τ . By construction,
the flows m∗,τ are consistent, i.e. s∗(m∗,τ+1)= m∗,τ . According to Theorem 1, the
consistent sequence {m∗,τ } generates the sequence {µ∗,τ } that converges to an invariant
measure µ in the weak topology.

We now show that the sequence {µt } converges to µ in the weak topology as well. Let
t = τ + k, let Gτ be the symbolic image with respect to a partition Cτ , and let M(i) be the
cells of Cτ . We have∫

φ dµt −

∫
φ dµ=

∑
i

φ(xi )m
t
i −

∑
i

φ(x∗i )m
∗

i ,
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12 G. Osipenko

where mt
i = µt (M(i)), m∗i = µ(M(i)), and the points xi and x∗i lie in M(i) and are

determined by the mean value theorem applied to each M(i). By the assumption, we
have that ∑

i

|mt
i − m∗i | =

∑
i

|µt (M(i))− µ
∗(M(i))|

=

∑
i

|mk,τ (M(i))− m∗,τ (M(i))|

= ρ(mk,τ , m∗,τ )→ 0

as k→∞. Hence∣∣∣∣∫ φ dµt −

∫
φ dµ

∣∣∣∣ = ∣∣∣∣∑
i

[φ(xi )(m
t
i − m∗i )+ (φ(xi )− φ(x

∗

i ))m
∗

i ]

∣∣∣∣
≤ ‖φ‖

∑
i

|mt
i − m∗i | + α(dt )

∑
i

m∗i

= ‖φ‖ρ(mk,τ , m∗,τ )+ α(dτ ),

where ‖φ‖ = supM |φ(x)|, dτ is the maximal diameter of Cτ and α(d) is the modulus of
continuity of the function φ.

To prove that µt → µ in the weak topology, it is enough to show that for a given
function φ and an ε > 0, there is a number t0 such that∣∣∣∣∫ φ dµt −

∫
φ dµ

∣∣∣∣< ε
for t > t0. For any given number ε/2 and function φ, we fix τ and dτ > 0 so that α(dτ ) <
ε/2. For fixed values of τ, ε/2 and ‖φ‖, we find k such that ρ(mk,τ , m∗,τ ) < ε/(2‖φ‖) if
1≤ ‖φ‖ or ρ(mk,τ , m∗,τ ) < ε/2 if ‖φ‖< 1. Set t0 = τ + k. Then for t > t0 we have∣∣∣∣∫ φ dµt −

∫
φ dµ

∣∣∣∣≤ ‖φ‖ρ(mk,τ , m∗,τ )+ α(dτ ) < ε/2+ ε/2= ε.

Thus
∫
φ dµt →

∫
φ dµ as t→∞, and therefore the sequence of measures {µt }

converges to µ in the weak topology. 2

If the sequence {mt
} is consistent, i.e. if s∗(mt+1)= mt , then mk,τ

= mτ and the
sequence of projections {mk,τ

} converges to mτ . So, Theorem 2 is a generalization of
Theorem 1. These theorems cannot, however, be applied to a sequence of general form.
The next theorem describes the properties of an arbitrary sequence of flows.

THEOREM 3. Suppose that a sequence of symbolic images {G t } of the homeomorphism f
and a sequence of flows {mt

} are fixed and that dt → 0 as t→∞. Then:
(1) there exists a subsequence indexed by tk→∞ such that µtk (constructed via (9))

converges in the weak topology to a measure µ that is invariant with respect to f ;
(2) if some subsequence of measures µtl converges in the weak topology to a measure

µ∗, then µ∗ is invariant with respect to f .

Proof. Consider one of the symbolic images, G1, say. The set of flows on G1 forms the
convex polyhedron M1. Each flow m = {mi j } is represented by a point in RN where N is
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Symbolic images and invariant measures of dynamical systems 13

the number of vertices of M1. By means of the natural mapping s∗ :M(G t )→M(G1)=

M1, we transform the flows mt on the graph G1 and denote the transformed flows by mt
1,

i.e. mt
1 = s∗(mt ). So, on the compact set M1, we have the sequence {mt

1} from which
we can take a convergent subsequence{mtk

1 }. Let m∗1 = limk→∞ mtk
1 . Next, consider the

symbolic image G2, for which we construct a flow m∗2 as the limit of some subsequence
of the projections s∗(mtk ) on M2. Following this procedure, we construct the flow m∗t on
each symbolic image G t . If we now take the diagonal subsequence {mtτ }, then on each
symbolic image G t the sequence s∗(mtτ ) converges to m∗t . According to Theorem 2, the
subsequence of measures µtτ converges to an invariant measure µ in weak topology. Thus,
assertion (1) of the theorem is proved.

To prove the second assertion, suppose that there is a subsequence of measures that is
convergent to µ in the weak topology. Without loss of generality we can assume that the
original sequence converges to µ. By assertion (1), we can take a subsequence {µtk } that
converges to an invariant measure µ∗. Hence µ∗ = µ by uniqueness of the limit, and µ is
invariant. The theorem is thus proved. 2

The results we have obtained are applicable to sequences of flows on symbolic images
with dk→ 0. In practice, it is desirable to have results concerning an individual flow on a
symbolic image for a small positive diameter d.

THEOREM 4. For any neighborhood U (in weak topology) of the set M( f ), there exists a
positive d0 such that for any partition C with the maximal diameter of cells satisfying
d < d0 and any flow m on the symbolic image G constructed with respect to C, the
measure µ (constructed via m and (9)) lies in U.

Proof. Suppose, to the contrary, that there exists a neighborhood U of M( f ) such that
for any partition Ck with maximal diameter dk on the symbolic image Gk there is a flow
mk for which the measure µk does not lie in U . We may assume that dk→ 0. According
to the previous theorem, there exists a subsequence {mkp } such that the subsequence of
measures {µkp } constructed via (9) converges to an invariant measure µ ∈M( f ). This
means that for some number kp0 , the subsequence µkp with p > p0 is in U , which is a
contradiction. 2

Theorem 4 guarantees that any measure constructed by means of a symbolic image is a
good approximation of some invariant measure, provided that the diameter of the partition
is small enough. In practice, we can construct no more than a finite number of symbolic
images, hence the obtained result provides a basis for practical computation. Moreover,
this theorem allows us to consider the set M(G) of all flows on a symbolic image G as
an approximation of the set of invariant measures M( f ), provided that the diameter of the
partition is small enough.

4. Stochastic Markov chains
A stochastic Markov chain [11] is defined by a collection of states {i = 1, 2, . . . n} together
with probabilities Pi j of transition from state i to state j . The matrix of transition
probabilities, P = (Pi j ), is a stochastic matrix, i.e. Pi j ≥ 0 and

∑
j Pi j = 1 for each i .

A probability distribution p = (p1, p2, . . . , pn), with
∑

i pi = 1, is stationary if p is a
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14 G. Osipenko

left fixed vector of the matrix P . It should be noted (see, e.g., [9]) that a stochastic matrix
is sometimes defined as the transpose of that described above, in which case a stationary
distribution would be a right eigenvector.

Each flow m = {mi j } on a graph G generates a stochastic Markov chain such that the
states {i} are vertices {i | mi 6= 0} and the transition probability i→ j is given by

Pi j = mi j/mi .

The resulting stochastic matrix P = (mi j/mi ) has a stationary distribution of the form
(m1, m2, . . . , mn). So any flow m = {mi j } on a graph G generates a stochastic Markov
chain for which the distribution (mi ) of measures of vertices is stationary.

It turns out that the converse is also true: for any stochastic matrix P = (Pi j ) and
associated stationary distribution p = (pi ), there exists a flow m = {mi j } such that the
distribution of measures on vertices is mi = pi . In fact, let P be a stochastic matrix and
suppose that pP = p. Consider a graph G with n vertices {i} and edges {i→ j if Pi j > 0}.
Let us construct a distribution on the edges of the form mi j = Pi j pi and prove that the
constructed distribution is a flow on G. Since P is a stochastic matrix, we have the equality∑

j Pi j = 1 for each i . It follows that∑
j

mi j =
∑

j

Pi j pi = pi

∑
j

Pi j = pi .

Since pP = p, we have
∑

k pk Pki = pi for each i . Thus we obtain∑
k

mki =
∑

k

pk Pki = pi =
∑

j

mi j ,

i.e. Kirchhoff’s law is valid for the distribution mi j . Moreover,
∑

i j mi j =
∑

i pi = 1.
>From the above it follows that the flow technology on the graph is equivalent to the

stochastic-matrix method. The papers [3, 4, 6, 7] use a stochastic matrix of the form

Pi j = v(M(i) ∩ f −1(M( j)))/v(M(i)),

where v is Lebesgue measure and the M(i) are cells of a partition. In these papers, the SBR
measure is constructed via the stochastic-matrix method under some additional conditions.
It is clear that the construction of a stochastic matrix through a non-Lebesgue measure
leads, in general, to an invariant measure that differs from SBR measure. For example,
a stochastic matrix can be obtained from the zero–one matrix 5= (πi j ) where πi j = 1
if the edge i→ j exists and πi j = 0 otherwise. By setting Pi j = πi j/(

∑
k πik), we get a

stochastic matrix, a flow and an approximation of an invariant measure.

5. The balance method
We have considered the construction of a flow on a graph based on a collection of periodic
paths. Now we look at another method, which allows us to obtain an invariant flow
from any non-invariant distribution in an iterative manner. Let the matrix P = (pi j ) be
an arbitrary distribution of non-negative values on the edges of a graph G. The set of edges
G(P+)= {i→ j | pi j > 0} taking positive values of P is called the support of P . We will
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Symbolic images and invariant measures of dynamical systems 15

construct a flow on the support G(P+). From what we have shown above, the support
necessarily has to contain a periodic path in order for a flow on G(P+) to exist.

Let G be a graph with n vertices. A matrix x = (xi j ) is a flow on G if the following
conditions are satisfied:
• xi j ≥ 0;
•

∑
i j xi j = 1;

•
∑

j xi j =
∑

k xki for i = 1, 2, . . . , n.
Moreover, we require that the support of x be in G(P+), i.e. that xi j = 0 if pi j = 0. A
similar computational task arises in the theory of convex programming. Our discussion
is based on the paper [2], in which the method we need is substantiated. The task of
computing a flow on a graph may be considered as a special example of a transport
problem. The Leningrad architect G. V. Sheleikhovsky solved such a problem in the
1940s [15] by using the balance method. Starting from an arbitrary distribution, he
recalculated the distribution in a sequential way such that at each step only one equality
is required to be satisfied while the others escape attention. By repeating such a process
in a cyclic manner, he obtained a sequence of distributions that converged rapidly to the
desired solution. We shall solve our task in the same way.

PROPOSITION 6. Let P = (pi j ) be an arbitrary non-negative distribution on G such that
G(P+) contains a periodic path. Then there exists an algorithm that constructs the flow
Q = (qi j ) on G, with G(Q+)⊂ G(P+), which maximizes the function

g(x)=
∑

i j

xi j ln
pi j

xi j
=

∑
i j

xi j ln pi j −
∑

i j

xi j ln xi j

in the space of flows on G(P+).

Proof. Let d be the number of the edges of the graph G(P+), with d ≤ n2. If the
elements with pi j > 0 are put in sequential order (i j)→ k = 1, 2, . . . , d (for instance,
row by row from top to bottom), then x can be considered as a point in the space
S = {x ∈ Rd

| xk = xi j > 0}. Set

B0 =

{
x ∈ Rd

∣∣∣ xi j ≥ 0,
∑

i j

xi j = 1
}
,

Bi =

{
x ∈ Rd

∣∣∣ xi j ≥ 0,
∑

j

xi j =
∑

k

xki

}
for i = 1, 2, . . . , n. The intersection D =

⋂
i Bi ∩ B0 is a compact set that lies in the

closure S; hence the function g reaches its maximum on D. Our goal is to find the point
at which the maximum is attained. In [2], the following problem of convex programming
was solved.

Let f (x) be a strictly convex function that is continuously differentiable on a convex
set S ⊂ Rd and continuous on S. It is required to minimize the function f under the linear
restrictions

Ax = b, x ∈ S,

where b ∈ Rm and A is a matrix with r columns and m rows.
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16 G. Osipenko

We shall apply the results of [2] to the function f =−g, which is strictly convex. Our
linear restrictions consist of n + 1 equations; the first of these gives the normalization∑

i j

xi j = 1, (12)

and the next n equations describe the invariance (Kirchhoff’s law):∑
j

xi j −
∑

k

xki = 0, i = 1, 2, . . . , n. (13)

The necessary condition for existence of a solution to the optimization task is the existence
of a solution to the system (12–13). The existence of a periodic path in G(P+) guarantees
that there is a flow on G(P+) which is the solution needed.

Consider the following iteration steps.
(1) Take an arbitrary point (matrix) x0

∈ S.
(2) If a point x t is known, choose the pt th equation and find a point x t+1

∈ Bpt that
satisfies this equation but which may not satisfy the others. The method of computing
such a point will be described later.

In the iterative loop we have to take all n + 1 equations. The sequence {x t
} thus obtained

is called a relaxation sequence, and the index sequence {pt } is called a relaxation control.
It is possible to take the relaxation control in ordinary cyclic order, i.e. first solve the
normalization equation and then take consecutive invariance equations.

It was shown in [2] that for {x t
} to solve the extremum problem the points x t+1 and x t

have to satisfy the following system of equations:

grad f (x t+1)= grad f (x t )+ λAp, (14)

(Ap, x t+1)= bp, (15)

where grad f is the gradient of f , λ is an unknown parameter, (*,*) denotes the inner
product, Ap is the row of the left-hand side of the pth equation, and bp is the right-hand
side of the same equation. In other words, x t+1 is a solution of the pth equation. For the
function

f (x)=−g(x)=
∑

i j

xi j ln xi j/pi j ,

we have
(grad f (x))i j = ln

xi j

pi j
+ 1.

For the normalizing equation (12), we get the system

ln
x t+1

i j

pi j
= ln

x t
i j

pi j
+ λ,∑

i j

x t+1
i j = 1.

Hence we obtain the ordinary transformation of normalization,

x t+1
i j =

x t
i j∑

kl x t
kl
. (16)
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Symbolic images and invariant measures of dynamical systems 17

For the i th equation of the invariance (13), we get the following system of equations:

ln
x t+1

i j

pi j
= ln

x t
i j

pi j
+ λ,

ln
x t+1

ki

pki
= ln

x t
ki

pki
− λ,∑

j 6=i

x t+1
i j −

∑
k 6=i

x t+1
ki = 0.

Then

exp λ=
(∑

k 6=i x t
ki∑

j 6=i x t
i j

) 1
2

and we obtain the transformation in the form

x t+1
i j = x t

i j

(∑
m 6=i x t

mi∑
l 6=i x t

il

) 1
2

(17)

for j 6= i ,

x t+1
ki = x t

ki

( ∑
l 6=i x t

il∑
m 6=i x t

mi

) 1
2

(18)

for k 6= i , and

x t+1
i i = x t

i i . (19)

The formulas (17), (18) and (19) describe the transformation of the i th row and i th column
of the matrix x t in step t . The other elements of x t do not change. According to [2], the
sequence thus obtained has a limit if the function

D(x, y)= f (x)− f (y)− (grad f (y), x − y)

is such that D(x, yk)→ 0 when x ∈ S, yk
→ x and yk

∈ S. In our case,

D(x, y)=
∑

i j

(yi j − xi j )+
∑

i j

xi j ln xi j −
∑

i j

xi j ln yi j ,

and the property is easily checked. Moreover, in this case (see [2]) the limit does not
depend on the relaxation control but only on the initial value x0. For the limit value

Q = lim
t→∞

x t ,

to solve the extremum problem it suffices to take the initial value as the point of the global
minimum of f , i.e. to set x0

i j = pi j exp(−1). Taking into account the normalization, we
can start the iteration process with

x0
i j = pi j , (20)

and the proposition is proved. 2
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18 G. Osipenko

Consider a relaxation control that results in fast convergence to the desired solution. Let
x = (xi j ) be an arbitrary non-negative distribution on the edges of G. We give an index
i = 0, 1, . . . , n to each of the equations in (2) and (3) so that i = 0 corresponds to the
normalization equation (3) and each i > 0 corresponds to the invariance property for the
i th vertex. For the matrix x = (xi j ) and each i , we determine the residual

a0 =

∣∣∣∣1−∑
i j

xi j

∣∣∣∣,
ai =

∣∣∣∣∑
j

xi j −
∑

k

xki

∣∣∣∣, i > 0.

PROPOSITION 7. Let the hypotheses of the previous proposition be fulfilled. Select the
initial distribution

x0
i j = pi j

and the relaxation control such that for each x t , the index pt realizes the maximum of the
residual:

apt =max{ai : i = 0, 1, . . . , n}.

When pt = 0, x t+1 is defined by (16); when pt > 0, x t+1 is defined by (17)–(19) where
i = pt . Then the obtained sequence converges to the flow Q = (qi j ) which maximizes the
function

g(x)=
∑

i j

xi j ln
pi j

xi j
=

∑
i j

xi j ln pi j −
∑

i j

xi j ln xi j

in the space of flows on G(P+), with G(Q+)⊂ G(P+).

This proposition was proved in a more general form in [2]. Moreover, as mentioned
above, in our case the limit value Q = (qi j ) does not depend on the relaxation control but
only on the initial value. The proposition is useful in regard to computational practice,
since it offers a possibility of increasing, essentially, the speed of convergence. Notice that
since the transformations (16)–(19) contain the normalization, an initial value Lx0, L > 0,
that is proportional to the original one will give the same limit value Q. In computing
applications of the balance method, one must remember that it is necessary for a support
of any flow to be in the set of recurrent edges. It follows that the support of the initial
value has to be in the same set and, moreover, that it is enough to construct a flow on each
strongly connected component and then take the linear hull of these flows, if needed.

Example 1. The maximum flow on a graph.

Consider the zero–one adjacency matrix 5= (πi j ) of the graph G, i.e. πi j = 1 if the
edge i→ j exists and πi j = 0 otherwise. Let us apply Proposition 6 or Proposition 7 with
P =5 and initial value x0

=5. As a result of the normalization we get x1
=5/N ,

where N is the number of edges of the graph G. According to the propositions, the
relaxation sequence converges to the distribution Q = (qi j ), which is a flow on G that
maximizes the function

g(x)=−
∑

i j

xi j ln xi j
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Symbolic images and invariant measures of dynamical systems 19

on the set of all flows M(G). Notice that if the normalization condition is satisfied but not
the Kirchhoff law, the maximum of g is obtained from xi j = const= πi j/N , in which case
gmax = ln N . If all the conditions are satisfied, then the flow Q maximizing the function g
will be close to xi j = const, i.e. Q is distributed to the maximal possible extent on G.

Example 2. Application of the balance method to the Ikeda mapping.

The Ikeda mapping arises in the modeling of optical recording media (crystals) [8] and
is of the form (

x
y

)
→

(
d + a(x cos τ(x, y)− y sin τ(x, y))

b(x sin τ(x, y)+ y cos τ(x, y))

)
, (21)

τ(x, y)= 0.4−
6

1+ x2 + y2 , (22)

where d > 0, 0< a < 1 and 0< b < 1. The mapping contracts area and has a global
attractor. In [13, 14] it was shown that if d = 2, a =−0.9 and b = 0.9, then the mapping
switches the orientation and has a global attractor in the domain M = [−10, 10] ×
[−10, 10].

To locate the global attractor, we use ten subdivisions and construct the sequence of
symbolic images G1, . . . , G10. In the top picture of Figure 1, the covering of the attractor
lies in the (x, y) plane. It is constructed on G10 and consists of 96 543 cells of size
0.019× 0.019. The invariant flow is constructed on G10 by using the balance method
with adjacency matrix 5 as the initial value. The relaxation method leads to the matrix
Q = (qi j ) of size 96 543× 96 543 which maximizes the function g(x)=−

∑
i j xi j ln xi j .

The distribution of the invariant measure is shown in the bottom picture of Figure 1, where
the measure of each cell is represented by the z-value. Since Q maximizes the function g,
the invariant measure is distributed to the maximum allowable extent on the attractor.

This numerical experiment was performed by postgraduate student E. Petrenko at St.
Petersburg University.

Example 3. Estimation of entropy.

Now we use the technique we have developed to estimate the entropy with respect to a
measure. Suppose an invariant flow m = {mi j } is constructed on a symbolic image G of
the mapping f . As remarked earlier, the flow m can be considered as an approximation of
an invariant measure µ if the diameter d is small enough. The flow m on G generates a
Markov chain [11, pp. 47 and 328] whose states are the vertices of G and whose transition
probabilities are

pi j =
mi j

mi
, mi =

∑
j

mi j .

Under these conditions, the probability matrix P = (pi j ) has a stationary distribution
(m1, m2, . . . , mn).

The entropy for the stationary distribution is computed by the formula

hm =−
∑

i

mi

∑
j

pi j ln pi j
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FIGURE 1. The balance method for the modified Ikeda mapping.

(see [11, p. 443]). Upon substituting pi j = mi j/mi , we find that

hm =−
∑

i j

mi j ln mi j +
∑

i

mi ln mi . (23)

Thus, the entropy can be calculated directly via the flow m = {mi j } The entropy of f with
respect to the invariant measure µ can be estimated by the formula (23), where the flow m
approximates µ. However, justifying this method for arbitrary f is a problem (although,
with hyperbolic structure for f , the estimation of entropy through SBR measures is well-
known [4, 7, 16]).
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