Symbolic images and invariant measures of dynamical systems

GEORGE OSIPENKO
Department of Mathematics, St. Petersburg State Technical University, St. Petersburg, Russia
(e-mail: george.osipenko@mail.ru)

(Received 8 October 2008 and accepted in revised form 9 March 2009)

Abstract. Let f be a homeomorphism of a compact manifold M. The Krylov-Bogoloubov theorem guarantees the existence of a measure that is invariant with respect to f. The set of all invariant measures $\mathcal{M}(f)$ is convex and compact in the weak topology. The goal of this paper is to construct the set $\mathcal{M}(f)$. To obtain an approximation of $\mathcal{M}(f)$, we use the symbolic image with respect to a partition $C=\{M(1), M(2), \ldots, M(n)\}$ of M. A symbolic image G is a directed graph such that a vertex i corresponds to the cell $M(i)$ and an edge $i \rightarrow j$ exists if and only if $f(M(i)) \cap M(j) \neq \emptyset$. This approach lets us apply the coding of orbits and symbolic dynamics to arbitrary dynamical systems. A flow on the symbolic image is a probability distribution on the edges which satisfies Kirchhoff's law at each vertex, i.e. the incoming flow equals the outgoing one. Such a distribution is an approximation to some invariant measure. The set of flows on the symbolic image G forms a convex polyhedron $\mathcal{M}(G)$ which is an approximation to the set of invariant measures $\mathcal{M}(f)$. By considering a sequence of subdivisions of the partitions, one gets sequence of symbolic images G_{k} and corresponding approximations $\mathcal{M}\left(G_{k}\right)$ which tend to $\mathcal{M}(f)$ as the diameter of the cells goes to zero. If the flows m^{k} on each G_{k} are chosen in a special manner, then the sequence $\left\{m^{k}\right\}$ converges to some invariant measure. Every invariant measure can be obtained by this method. Applications and numerical examples are given.

1. Introduction

Let $f: M \rightarrow M$ be a homeomorphism of a compact manifold $M \subset \mathbb{R}^{d}$ that generates the discrete dynamical system $\left\{f^{k}: k \in \mathbb{Z}\right\}$. Let $C=\{M(1), \ldots, M(n)\}$ be a finite covering of M. The set $M(i)$ is called the cell (or box) of index i. Let G be a directed graph with vertices $\{i\}$ corresponding to the cells $\{M(i)\}$. Two vertices i and j of G are connected by the directed edge $i \rightarrow j$ if and only if $f(M(i)) \cap M(j) \neq \emptyset$. The graph G is called the symbolic image of f with respect to the covering C.

The notion of symbolic image of a dynamical system was introduced in [12]. It is a powerful tool for investigating global dynamics and the structure of orbits. It enables us to apply the coding of orbits and symbolic dynamics to arbitrary dynamical systems. Symbolic image methods and their applications are discussed in detail in [14].

Here we consider the construction of invariant measures based on the concept of symbolic image. The Krylov-Bogolubov theorem [10] guarantees the existence of a probability measure μ that is invariant with respect to f. The collection of all f-invariant measures $\mathcal{M}(f)$ forms a convex compact set in the weak topology [9]. Ulam [17] proposed a method for constructing a sequence of measures by approximation of the FrobeniusPerron operator; such a sequence converges to an invariant measure. In particular, Sinai-Bowen-Ruelle (SBR) measures were constructed via the Ulam method in a variety of settings [4-6]. The paper [3] describes numerical methods and results relating to the approximation of SBR measures. However, despite the fact that any map f has a set of invariant measures $\mathcal{M}(f)$, it is not necessarily the case that f will have SBR measure. Extreme points of the convex set $\mathcal{M}(f)$ are ergodic measures.

Our aim in this paper is to construct the set $\mathcal{M}(f)$ for any f. To obtain an approximation of $\mathcal{M}(f)$, we use the notion of symbolic image with respect to a partition of M. In the general case, there are no restrictions on the properties of the cells. However, we will focus on coverings C with connected Lebesgue-measurable cells. In numerical experiments, these cells are parallelepipeds that intersect in the boundary discs. When the covering C is a partition, the cells are semi-open parallelepipeds and the boundary discs belong to one of the cells.

To understand the proposed construction, suppose that the transformation f has an invariant measure μ; then each edge $i \rightarrow j$ of the symbolic image G gets the measure

$$
\begin{equation*}
m_{i j}=\mu\left(M(i) \cap f^{-1}(M(j))\right)=\mu(f(M(i)) \cap M(j)), \tag{1}
\end{equation*}
$$

where the second equality comes from the invariance of μ. In addition, we have
$\sum_{k} m_{k i}=\sum_{k} \mu(f(M(k)) \cap M(i))=\mu(M(i))=\sum_{j} \mu\left(M(i) \cap f^{-1}(M(j))\right)=\sum_{j} m_{i j}$.
The sum $\sum_{k} m_{k i}$ is called the incoming flow at vertex i, and the sum $\sum_{j} m_{i j}$ is the outgoing flow from i. The equality

$$
\begin{equation*}
\sum_{k} m_{k i}=\sum_{j} m_{i j} \tag{2}
\end{equation*}
$$

can be treated as a Kirchhoff-type law. In addition, we have the equality

$$
\begin{equation*}
\sum_{i j} m_{i j}=\mu(M)=1, \tag{3}
\end{equation*}
$$

which means that the distribution $m_{i j}$ is normalized. So an invariant measure μ generates on the symbolic image a distribution $m_{i j}$ which satisfies the conditions (2) and (3). This observation leads us to the following definition.

Definition 1. Let G be a directed graph. A distribution $\left\{m_{i j}\right\}$ on the edges $\{i \rightarrow j\}$ is called a flow on G if:

- $\quad m_{i j} \geq 0 ;$
- $\quad \sum_{i j} m_{i j}=1$;
- $\quad \sum_{k} m_{k i}=\sum_{j} m_{i j}$ for each vertex $i \in G$.

The last property may be thought of as invariance of the flow. The second property, i.e. normalization, can be rewritten in the form $m(G)=1$, where the measure of G is the sum of the measures of its edges. In graph theory, such a distribution is called a closed or invariant flow. For the flow $\left\{m_{i j}\right\}$ on G, we define the measure of the vertex i to be

$$
m_{i}=\sum_{k} m_{k i}=\sum_{j} m_{i j}
$$

In this case, $\sum_{i} m_{i}=m(G)=1$. Thus, each invariant measure generates a flow on the symbolic image. Now consider the converse construction. Let $m=\left\{m_{i j}\right\}$ be a flow on a symbolic image G. Then a measure μ^{*} can be defined by the formula

$$
\begin{equation*}
\mu^{*}(A)=\sum_{i} m_{i} v(A \cap M(i)) / v(M(i)) \tag{4}
\end{equation*}
$$

where v is a normalized Lebesgue measure. It is assumed that $v(M(i)) \neq 0$ for each cell. By the above definition, the measure of $M(i)$ coincides with the measure of the vertex i :

$$
\mu^{*}(M(i))=m_{i}
$$

The inequalities

$$
\sum_{k: M(k) \subset A} m_{k} \leq \mu^{*}(A) \leq \sum_{i: M(i) \cap A \neq \emptyset} m_{i}
$$

follow from (4). They may be treated as lower and upper estimates for the invariant measure constructed through the distribution (flow) m. In general, the constructed measure μ^{*} is not invariant with respect to f. However, as will be shown later, this measure is an approximation of an invariant measure.

The set of flows $\left\{m=\left(m_{i j}\right)\right\}$ on the symbolic image G forms a convex polyhedron $\mathcal{M}(G)$ which is an approximation of the set of invariant measures $\mathcal{M}(f)$. By considering a sequence C_{k} of subdivisions of the partitions, one gets a sequence of symbolic images G_{k} and corresponding approximations $\mathcal{M}\left(G_{k}\right)$ which tend to $\mathcal{M}(f)$ as the diameters of the cells go to zero. This technique allows us to get an individual measure. If the flows m^{k} on each G_{k} are chosen in a special manner, then the sequence $\left\{m^{k}\right\}$ converges to some invariant measure μ. Moreover, every invariant measure can be obtained by this method.

2. Flows on graphs

Let G be a directed graph with n vertices. Consider the space $\mathcal{M}(G)=\{m\}$ of all flows on G. Let $m^{1}=\left\{m_{i j}^{1}\right\}$ and $m^{2}=\left\{m_{i j}^{2}\right\}$ be two flows, and let $\alpha, \beta \geq 0$ be such that $\alpha+\beta=1$. Then it is easy to check that the distribution

$$
m=\alpha m^{1}+\beta m^{2}=\left\{\alpha m_{i j}^{1}+\beta m_{i j}^{2}\right\}
$$

is a flow as well. In this case we say that the flow m is the sum of the flows m^{1} and m^{2} with weights α and β. Thus, the space of all flows $\mathcal{M}(G)$ is a convex set.

Let us investigate the structure of $\mathcal{M}(G)$. Suppose that $\omega=\left(i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{k} \rightarrow\right.$ i_{1}) is a simple periodic path (cycle); this means that all vertices $\left\{i_{t}: t=1,2, \ldots, k\right\}$ are different. To construct a simple flow $m(\omega)$ located on the cycle, we put $m_{i j}=1 / k$ for all edges from ω and $m_{i j}=0$ for all other edges. It is evident that $m(\omega)$ is invariant, unique, located on the cycle ω and not decomposable into the sum of other flows. In other words, $m(\omega)$ is an extreme point of the set $\mathcal{M}(G)$. Since the number of vertices is finite, the number of simple flows (cycles) is finite as well.

Proposition 1. Any flow $m \in \mathcal{M}(G)$ can be decomposed into the sum of simple flows.
Proof. Let $m=\left\{m_{i j}\right\}$ be a flow on G. Consider a set of the edges $D=\{i \rightarrow j\}$ such that $m_{i j}>0$. Kirchhoff's law (2) holds on this set. It follows that there is a path of infinite length, $\omega^{*} \in D$, that goes through each edge from D. In fact, if there is an edge $k \rightarrow i$ with $m_{k i}>0$, then by (2) there must be an edge $i \rightarrow j$ with $m_{i j}>0$; hence we can continue the path in D. Since G has a finite number of edges, ω^{*} contains a periodic path ω which can be considered as a simple one. Let p be the minimal period of ω and define

$$
m_{\min }=\min \left\{m_{i j} \mid i \rightarrow j \in \omega\right\}>0
$$

to be the minimal measure of edges from ω. Let $\alpha>0$ be a number such that

$$
\alpha=p m_{\min } \quad \text { or } \quad \alpha / p=m_{\min }
$$

We construct a new distribution m^{*} on the edges of G. For each edge $i \rightarrow j$ in ω we define a new measure $m_{i j}^{*}=m_{i j}-\alpha / p \geq 0$. If an edge $i \rightarrow j$ is not included in ω, then $m_{i j}^{*}=m_{i j}$. It is clear that the sum of measures of all edges is $\sum_{i j} m_{i j}^{*}=1-\alpha$.

Let us show that Kirchhoff's law (2) holds for the distribution m^{*}. If a vertex i is not in ω, then $m_{i j}^{*}=m_{i j}, m_{k i}^{*}=m_{k i}$ and the equality (2) holds. Let i lie in the simple cycle ω. Then, in ω, there exists an edge $k^{*} \rightarrow i$ coming in at i and an edge $i \rightarrow j^{*}$ going out from i; all other edges from ω are free of connection with the vertex i, since ω is a simple cycle. In this case, the left- and right-hand sides of the equality

$$
\begin{equation*}
\sum_{k} m_{k i}=\sum_{j} m_{i j} \tag{5}
\end{equation*}
$$

contain, respectively, the terms $m_{k^{*} i}$ and $m_{i j^{*}}$ generated by the edges $k^{*} \rightarrow i$ and $i \rightarrow j^{*}$; all the other terms are free of connection with the cycle ω. Thus we have

$$
\begin{equation*}
m_{k^{*} i}+\sum_{k \neq k^{*}} m_{k i}=m_{i j^{*}}+\sum_{j \neq j^{*}} m_{i j} . \tag{6}
\end{equation*}
$$

Subtracting $\alpha / p=m_{\min }$ from both sides of (6), we get the equality

$$
m_{k^{*} i}-\alpha / p+\sum_{k \neq k^{*}} m_{k i}=m_{i j^{*}}-\alpha / p+\sum_{j \neq j^{*}} m_{i j}
$$

or

$$
\sum_{k} m_{k i}^{*}=\sum_{j} m_{i j}^{*} .
$$

It follows that the new distribution m^{*} satisfies Kirchhoff's law but that the set of edges $D^{*}=\{i \rightarrow j\}$ with $m_{i j}^{*}>0$ does not contain some edges from the cycle ω, since

$$
m_{\min }^{*}=m_{\min }-\alpha / p=0
$$

on ω.
By repeating this process of eliminating simple cycles from D, we obtain, in a finite number of steps, the zero distribution. In this case, the initial flow can be represented in the form

$$
m=\sum_{\omega} \alpha_{\omega} m_{\omega},
$$

where $\alpha_{\omega} \geq 0, m_{\omega}$ is a simple flow, and the sum is taken over all simple cycles. It follows from the equality $m(G)=m_{\omega}(G)=1$ that $\sum_{\omega} \alpha_{\omega}=1$.

Remark. It follows from the proof that the measure $m_{i j}$ may be positive on an edge $i \rightarrow j$ when a periodic path passes through it.

A vertex i is called recurrent if a periodic path passes through it. Two recurrent vertices i and j are equivalent if there is a periodic path that contains both i and j. The set of recurrent vertices is decomposed into classes of equivalent recurrent vertices, called strongly connected components in graph theory. The strong components of a symbolic image generate an isolating neighborhood of the chain-recurrent set of a dynamical system [14]. It is known [9] that an invariant measure equals zero outside the chainrecurrent set. Hence, to construct invariant measures, it is enough to study an isolated component of the chain-recurrent set. Because of this, without loss of generality we can suppose that the graph G consists of a single strong component.

It follows from Proposition 1 that the family of flows $\mathcal{M}(G)$ is a convex polyhedron which is the hull of the simple flows. This means that any flow can be constructed by the following method. Let $P=\left\{\omega_{z}\right\}$ be the set of all simple cycles and $\left\{m_{i j}^{z}\right\}$ the set of simple flows. The set of simple flows is finite and each simple flow is uniquely defined. By Proposition 1, any flow $m=\left\{m_{i j}\right\}$ is determined by a collection of values $a_{z} \geq 0$ such that $\sum_{z} a_{z}=1$, in which case $m_{i j}=\sum_{z} a_{z} m_{i j}^{z}$. The coefficients $\left\{a_{z}\right\}$ are called the weights of $\left\{\omega_{z}\right\}$. Consequently, the flow m can be represented by a point on the standard simplex

$$
\Delta=\left\{a \in \mathbb{R}^{N} \mid a_{z} \geq 0, \sum_{z} a_{z}=1\right\}
$$

where N is the number of simple cycles on G. The method of construction using all simple cycles can require a lot of computation time, since, as a rule, the number of all simple cycles is huge. For example, the full graph (in which each vertex is connected to every one) with n vertices has n^{2} edges and $N=2^{n}-1$ simple cycles. Of course, we can use a partial collection of the cycles by setting the weights of the untapped cycles to zero.

Definition 2. Let Q and G be directed graphs; then $s: Q \rightarrow G$ is said to be a mapping of the graphs (or graph mapping) if it transforms the vertices and edges of Q into the vertices and edges of G in a consistent way. In other words, if k and l are vertices of Q between
which there is an edge $k \rightarrow l$, and if $s(k)=i$ and $s(l)=j$, then the edge $i \rightarrow j$ exists in G and $s(k \rightarrow l)=i \rightarrow j$. The converse must hold as well: if $s(k \rightarrow l)=i \rightarrow j$, then $s(k)=i$ and $s(l)=j$.

A graph mapping generates a mapping of (admissible) paths, and a periodic path is transformed into a periodic path. It should be noted that under such a transformation the period may decrease. Recurrent vertices are transformed into recurrent ones and equivalent recurrent vertices are transformed into equivalent recurrent vertices [14]. Hence, strong components are transformed into strong components.

Proposition 2. Let Q and G be directed graphs, let $s: Q \rightarrow G$ be a mapping of the graphs and suppose that there exists a flow m on Q. Then, on G, the flow $m^{*}=s^{*}(m)$ is generated such that the measure of edge $i \rightarrow j \in G$ is

$$
m_{i j}^{*}=\sum_{s(p \rightarrow q)=i \rightarrow j} m_{p q},
$$

where the sum is taken over all edges $p \rightarrow q$ which are transformed into $i \rightarrow j$. If an edge $i \rightarrow j$ does not have a preimage, then $m_{i j}^{*}=0$.
Proof. It is enough to check two of the properties of flow for m^{*}. Since summation over all vertices of G coincides with summation over all vertices of Q, the normalization property holds:

$$
\sum_{i j} m_{i j}^{*}=\sum_{p q} m_{p q}=1
$$

To check the invariance property, we fix a vertex $i \in G$. If i does not have a preimage, i.e. if $s^{-1}(i)=\emptyset$, then both incoming edges and outgoing ones do not have preimages either. Hence, the measure equals zero and the invariance condition holds in i. If $s^{-1}(i) \neq \emptyset$, we consider all vertices p in the preimage $s^{-1}(i)$. The invariance condition is valid for each vertex p, so that

$$
\sum_{r} m_{r p}=\sum_{t} m_{p t} .
$$

By summing over $p \in s^{-1}(i)$ and taking into account the fact that $m_{r l}^{*}=0$ for edges $r \rightarrow l$ with $s^{-1}(r \rightarrow l)=\emptyset$, we get the desired equality

$$
\sum_{k} m_{k i}^{*}=\sum_{j} m_{i j}^{*}
$$

for $i \in G$.

Proposition 3. Suppose that an N-periodic path ω exists on the graph G. Then, on G, there is a flow m^{*} such that $m_{i j}^{*}=k_{i j} / N$, where $k_{i j}$ is the number of passages of ω through the edge $i \rightarrow j$.

Proof. Let $\omega=\left\{i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{N} \rightarrow i_{1}\right\}$. Construct the graph Q consisting of one simple cycle of period N, i.e. let $Q=\{1 \rightarrow 2 \rightarrow \cdots \rightarrow N \rightarrow 1\}$. On Q there exists a unique flow m such that $m_{p q}=1 / N$. Let the mapping $s: Q \rightarrow G$ stack the cycle Q on the periodic path ω, that is, $s(k)=i_{k}$. According to Proposition 2, a flow is generated on G
such that the measure of edge $i \rightarrow j$ is the sum of the measures of the edges in $s^{-1}(i \rightarrow j)$; in other words, $m_{i j}^{*}=k_{i j} / N$, where $k_{i j}$ is the number of passages of ω through the edge $i \rightarrow j$.

Let G consist of one strong component; then any two vertices are connected by an admissible path. Hence there exists a periodic path Ω passing through all vertices. The path Ω can be called 'dense on vertices'. According to Proposition 3, there is a flow $m=\left\{m_{i j}\right\}$ on G with positive measure $m_{i}=\sum_{j} m_{i j}>0$ for each vertex. Similarly, there exists a periodic path Ω^{*} passing through each edge; this path Ω^{*} can be called 'dense on edges'. Evidently, a path that is dense on edges is dense on vertices. According to Proposition 3, Ω^{*} generates a flow with $m_{i j}>0$ on each edge $i \rightarrow j$. Thus, on any graph there exists a flow which is positive on each recurrent vertex or edge.

Proposition 4. Suppose that on G there exists a family of periodic paths $\omega_{1}, \ldots, \omega_{r}$ with periods p_{1}, \ldots, p_{r}. Set $N=p_{1}+\cdots+p_{r}$. Then there exists a flow m on G such that $m_{i j}=k_{i j} / N$, where $k_{i j}$ is the number of passages of the paths $\omega_{1}, \ldots \omega_{r}$ through the edge $i \rightarrow j$.

Proof. The proof of this proposition essentially repeats the proof of Proposition 3. Let us assume the hypotheses of the proposition. Note that Proposition 2 does not require that the graphs G and Q be connected. Construct the graph Q consisting of the disconnected union of r simple cycles $\Omega_{1}, \ldots, \Omega_{r}$ with periods p_{1}, \ldots, p_{r}; then Q has N vertices and N edges, where $N=p_{1}+\cdots+p_{r}$. It is easy to check that on Q there is a flow m^{*} with the measure of edges given by $m_{p q}^{*}=1 / N$. The mapping $s: Q \rightarrow G$ stacks the cycles $\Omega_{1}, \ldots \Omega_{r}$ on the periodic paths $\omega_{1}, \ldots, \omega_{r}$, respectively. According to Proposition 2, the measure of edge $i \rightarrow j$ is the sum of the measures of its preimages, i.e. $m_{i j}=k_{i j} / N$ where $k_{i j}$ is the number of passages of the paths $\omega_{1}, \ldots \omega_{r}$ through the edge $i \rightarrow j$.

Proposition 4 may be generalized as follows.
Proposition 5. Suppose that on G there exists a family of periodic paths $\omega_{1}, \ldots, \omega_{r}$ with periods p_{1}, \ldots, p_{r}. Then there exists a flow m on G such that

$$
m_{i j}=\sum_{t=1}^{r} \alpha_{t} k_{i j}^{t} / p_{t},
$$

where $\alpha_{t} \geq 0, \sum_{t} \alpha_{t}=1$, and $k_{i j}^{t}$ is the number of passages of the path ω_{t} through the edge $i \rightarrow j$.

Proposition 4 can be obtained from Proposition 5 by taking $\alpha_{t}=p_{t} / N, N=\sum_{t} p_{t}$. It follows from Propositions 2 and 5 that any flow in $\mathcal{M}(G)$ can be obtained as described in Proposition 5.

3. Invariant measures and flows on the symbolic image

Consider a homeomorphism $f: M \rightarrow M$, a measured partition C and the symbolic image G generated by C. The maximal diameter of cells of the partition C will be denoted by d. Let us study the space of flows $\mathcal{M}(G)$ under successive subdivisions of C. Let the partition C be subdivided, i.e. divide each cell $M(i)$ into cells $M(i 1), M(i 2), \ldots$ such that
$M(i)=\bigcup_{k} M(i k)$. Thus we obtain a new partition $\mathrm{N} C$ and a new symbolic image $\mathrm{N} G$, with $\{(i k)\}$ as the indices of vertices. The natural mapping $s: \mathrm{N} G \rightarrow G$ has a very simple form: $s(i k)=i$. This mapping is a mapping of directed graphs, that is: if on $\mathrm{N} G$ there is an edge $(i k) \rightarrow(j l)$, then on G there exists the edge $i \rightarrow j$. The mapping s allows us to transfer any flow on $\mathrm{N} G$ to the flow on G :

$$
s^{*}: \mathcal{M}(N G) \rightarrow \mathcal{M}(G),
$$

as was described in the previous section. It is clear that, in general, $s^{*}(\mathcal{M}(N G)) \neq \mathcal{M}(G)$.

Definition 3. Two flows $m \in \mathcal{M}(N G)$ and $m^{*} \in \mathcal{M}(G)$ are said to be consistent if $s^{*}(m)=m^{*}$.

Consider successive subdivisions $C_{1}, C_{2}, C_{3}, \ldots$ such that the maximal diameters of the partitions, $d_{1}, d_{2}, d_{3}, \ldots$, tend to zero. Such a sequence generates a sequence of symbolic images $G_{1}, G_{2}, G_{3}, \ldots$ and mappings $s: G_{k} \rightarrow G_{k-1}$ and $s^{*}: \mathcal{M}\left(G_{k}\right) \rightarrow$ $\mathcal{M}\left(G_{k-1}\right)$. Thus we obtain the sequences

$$
G_{1} \stackrel{s}{\longleftarrow} G_{2} \stackrel{s}{\longleftarrow} G_{3} \stackrel{s}{\longleftarrow} \ldots
$$

and

$$
\mathcal{M}\left(G_{1}\right) \stackrel{s^{*}}{\leftarrow} \mathcal{M}\left(G_{2}\right) \stackrel{s^{*}}{\leftarrow} \mathcal{M}\left(G_{3}\right) \stackrel{s^{*}}{\leftarrow} \ldots
$$

The mapping $f: M \rightarrow M$ can be treated as an infinite graph with vertices $x \in M$ and edges $x \rightarrow f(x)$. For any symbolic image G, there is a mapping $s: M \rightarrow G$ of the form $s(x)=\{i \mid x \in M(i)\}$, i.e. a point x is mapped to the index of the cell that contains x. This mapping is a mapping of directed graphs. We obtain a sequence of the form

$$
\begin{equation*}
G_{1} \stackrel{s}{\longleftarrow} G_{2} \stackrel{s}{\longleftarrow} G_{3} \stackrel{s}{\longleftarrow} \cdots \stackrel{s}{\longleftarrow}\{f: M \rightarrow M\} . \tag{7}
\end{equation*}
$$

For any symbolic image G, there exists a mapping $s^{*}: \mathcal{M}(f) \rightarrow \mathcal{M}(G)$ given by the formula

$$
s^{*}(\mu)=m=\left\{m_{i j}=\mu\left(M(i) \cap f^{-1}(M(j))\right)\right\},
$$

where $M(i)$ and $M(j)$ are cells of the symbolic image G. The sequence (7) generates the sequence

$$
\begin{equation*}
\mathcal{M}\left(G_{1}\right) \stackrel{s^{*}}{\leftarrow} \mathcal{M}\left(G_{2}\right) \stackrel{s^{*}}{\leftarrow} \mathcal{M}\left(G_{3}\right) \stackrel{s^{*}}{\leftarrow} \cdots \stackrel{s^{*}}{\leftarrow} \mathcal{M}(f) . \tag{8}
\end{equation*}
$$

Suppose that on each symbolic image G_{k} there is a flow $m^{k} \in \mathcal{M}\left(G_{k}\right)$ and that these flows are consistent, i.e.

$$
s^{*}\left(m^{k+1}\right)=m^{k} .
$$

By using Lebesgue measure we construct the measure μ_{k} on M for each k :

$$
\begin{equation*}
\mu_{k}(A)=\sum_{i} m_{i}^{k} v(A \cap M(i)) / v(M(i)) \tag{9}
\end{equation*}
$$

where A is a measured set, the $M(i)$ are the cells of C_{k} and v is Lebesgue measure normalized on M. Therefore, we get the sequence of measures $\left\{\mu_{k}\right\}$ on the manifold M.

Theorem 1. Consider successive subdivisions of the partitions C_{k} with maximal diameters $d_{k} \rightarrow 0$. If m^{k} is a consistent sequence of flows on the symbolic images G_{k}, then on M there exists a f-invariant measure μ such that

$$
\mu=\lim _{k \rightarrow \infty} \mu_{k},
$$

where the convergence is considered in the weak topology.
Proof. Let $m^{k}=\left\{m_{i j}^{k}\right\}$ be a consistent sequence of flows on the symbolic images G_{k}. Let ϕ be a continuous function on the compact set M and let $C_{k}=\{M(i)\}_{k}$ be a partition of M. To each cell $M(i)$ we ascribe the measure m_{i}^{k} of the vertex $i \in G_{k}$. Take a point $x_{i} \in M(i)$ and construct the integral sum

$$
F_{k}(\phi)=\sum_{i} \phi\left(x_{i}\right) m_{i}^{k}
$$

We shall show that the limit

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F_{k}(\phi)=F(\phi) \tag{10}
\end{equation*}
$$

exists. It is enough to show that $F_{k}(\phi)$ is Cauchy sequence. Let $C_{l}, l>k$, be a subdivision of the partition C_{k} so that the cells $M(i r) \in C_{l}, r=1,2, \ldots$, form a partition of the cell $M(i) \in C_{k}$. Since the sequence of flows is consistent, we have

$$
m^{k}=s^{*}\left(m^{l}\right)
$$

and

$$
\begin{equation*}
m_{i}^{k}=\sum_{r} m_{i r}^{l}, \tag{11}
\end{equation*}
$$

where $m_{i r}$ is the measure of the cell $M(i r) \in C_{l}$ (or of the vertex (ir) $\in G_{l}$). Let us estimate the difference

$$
\left|F_{k}(\phi)-F_{l}(\phi)\right|=\left|\sum_{i} \phi\left(x_{i}\right) m_{i}^{k}-\sum_{i r} \phi\left(x_{i r}\right) m_{i r}^{l}\right|
$$

Taking into account the equality (11) and the uniform continuity of ϕ on the compact set M, we get

$$
\begin{aligned}
\left|F_{k}(\phi)-F_{l}(\phi)\right| & =\left|\sum_{i r}\left(\phi\left(x_{i}\right)-\phi\left(x_{i r}\right)\right) m_{i r}^{l}\right| \leq \sum_{i r}\left|\phi\left(x_{i}\right)-\phi\left(x_{i r}\right)\right| m_{i r}^{l} \\
& \leq \sup _{|x-y| \leq d_{k}}|\phi(x)-\phi(y)| \sum_{i r} m_{i r}^{l}=\alpha\left(d_{k}\right),
\end{aligned}
$$

where $\alpha(d)$ is the modulus of continuity of the function ϕ and d_{k} is the maximal diameter of C_{k}. Since $\alpha(d) \rightarrow 0$ as $d \rightarrow 0$, the sequence $F_{k}(\phi)$ is a Cauchy sequence and therefore the limit (10) exists.

In the same way, we can show that this limit does not depend on the choice of $x_{i} \in M(i)$. Thus, the linear functional $F(\phi)$ is well-defined. It is bounded, because $|F(\phi)| \leq \sup _{M}|\phi|$ and $F(\phi) \geq 0$ as $\phi>0$. According to the Riesz representation theorem [9], there exists a measure μ such that

$$
F(\phi)=\int_{M} \phi d \mu
$$

Since the measure μ_{k} is defined according to the formula (9), the measure μ_{k} on a cell $M(i)$ differs from Lebesgue measure by a constant factor, and the measure of each cell $\mu_{k}(M(i))=m_{i}^{k}$ coincides with the measure of the vertex $i \in G_{k}$. Next, we show that

$$
\lim _{k \rightarrow \infty} \mu_{k}=\mu
$$

in the weak topology. It suffices to show that for any continuous function ϕ,

$$
\int_{M} \phi d \mu_{k} \rightarrow \int_{M} \phi d \mu
$$

as $k \rightarrow \infty$. By the mean value theorem for each cell $M(i)$, there exists a point x_{i}^{*} in the closure $\overline{M(i)}$ such that

$$
\int_{M(i)} \phi d \mu_{k}=\phi\left(x_{i}^{*}\right) \mu_{k}(M(i))=\phi\left(x_{i}^{*}\right) m_{i}^{k} .
$$

Hence

$$
\int_{M} \phi d \mu_{k}=\sum_{i} \int_{M(i)} \phi d \mu_{k}=\sum_{i} \phi\left(x_{i}^{*}\right) m_{i}^{k} .
$$

So, it is enough to show that

$$
\lim _{k \rightarrow \infty} \sum_{i} \phi\left(x_{i}^{*}\right) m_{i}^{k}=\lim _{k \rightarrow \infty} \sum_{i} \phi\left(x_{i}\right) m_{i}^{k},
$$

where $\left|x_{i}^{*}-x_{i}\right| \leq d_{k}$. This can be proved in the same way as above by using the modulus of continuity of the function ϕ.

It is known [9] that the invariance of a measure μ with respect to f follows from the equality

$$
\int_{M} \phi d \mu=\int_{M} \phi(f) d \mu
$$

where ϕ is any continuous function on M. Consider the integral sum $F_{k}(\phi)=$ $\sum_{i} \phi\left(x_{i}\right) m_{i}^{k}$, where

$$
m_{i}^{k}=\sum_{j} m_{i j}^{k}=\sum_{r} m_{r i}^{k} .
$$

We have

$$
F_{k}(\phi)=\sum_{i} \phi\left(x_{i}\right) \sum_{r} m_{r i}^{k}=\sum_{i r} \phi\left(x_{i}\right) m_{r i}^{k} .
$$

In each term $\phi\left(x_{i}\right) m_{r i}^{k}$, we replace the point x_{i} by a point $x_{r i} \in f(M(r)) \cap M(i)$ and get

$$
F_{k}(\phi)=\sum_{i r} \phi\left(x_{r i}\right) m_{r i}^{k}+\sum_{i r}\left(\phi\left(x_{i}\right)-\phi\left(x_{r i}\right)\right) m_{r i}^{k}=\sum_{i r} \phi\left(x_{r i}\right) m_{r i}^{k}+\varepsilon^{*},
$$

where ε^{*} is estimated through the modulus of continuity of ϕ and $\varepsilon^{*}\left(d_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. For each point $x_{r i} \in f(M(r)) \cap M(i)$ there exists a point $z_{r i} \in M(r) \cap f^{-1}(M(i))$ such that $f\left(z_{r i}\right)=x_{r i}$, i.e. $z_{r i}=f^{-1}\left(x_{r i}\right)$. We therefore have

$$
F_{k}(\phi)=\sum_{i r} \phi\left(f\left(z_{r i}\right)\right) m_{r i}^{k}+\varepsilon^{*},
$$

where all points $z_{r i}, i=1,2, \ldots$, lie in $M(r)$. Let us replace these points by a single point $z_{r} \in M(r)$. We obtain the equalities

$$
\begin{aligned}
F_{k}(\phi) & =\sum_{i r} \phi\left(f\left(z_{r}\right)\right) m_{r i}^{k}+\sum_{i r}\left(\phi\left(f\left(z_{r i}\right)\right)-\phi\left(f\left(z_{r}\right)\right)\right) m_{r i}^{k}+\varepsilon^{*} \\
& =\sum_{r} \phi\left(f\left(z_{r}\right)\right) \sum_{i} m_{r i}^{k}+\varepsilon^{* *}+\varepsilon^{*}=\sum_{r} \phi\left(f\left(z_{r}\right)\right) m_{r}^{k}=F_{k}(\phi(f))+\varepsilon^{* *}+\varepsilon^{*},
\end{aligned}
$$

where $\varepsilon^{* *}$ is estimated through the modulus of continuity of ϕ and $\phi(f)$, and $\varepsilon^{* *}\left(d_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Passing to the limit as $k \rightarrow \infty$, we obtain the equality

$$
F(\phi)=F(\phi(f)),
$$

which says that the measure μ is f-invariant, as desired. The proof of the theorem is thus complete.

As indicated earlier, according to (1) each invariant measure μ generates a sequence of flows m^{k} on the symbolic images for any sequence of subdivisions $C_{1}, C_{2}, C_{3}, \ldots$; it is easy to verify that the sequence is consistent. The above theorem guarantees the converse, namely that each consistent sequence of flows m^{k} on the symbolic images G_{k} with $d_{k} \rightarrow 0$ generates an invariant measure.

Corollary 1. Every invariant measure μ can be obtained by the method described in Theorem 1.

So, an invariant measure and a consistent sequence of flows are interconvertible. Now we shall study sequences of flows which are not consistent. Consider a sequence of symbolic images $G_{1}, G_{2}, \ldots G_{t}, \ldots$ of the homeomorphism f with respect to a sequence of subdivisions $C_{1}, C_{2}, \ldots, C_{t}, \ldots$, with $d_{t} \rightarrow 0$ as $t \rightarrow \infty$. Fix a flow m^{t} on each symbolic image G_{t}. Using Lebesgue measure for m^{t}, we construct a sequence of measures μ_{t} on M by (9). On each symbolic image G_{τ} we define the sequence of flows $\left\{m^{k, \tau}: k=0,1, \ldots\right\}$ as the projection of the flows $m^{\tau+k}$ via the mapping s^{*} : $\mathcal{M}\left(G_{\tau+k}\right) \rightarrow \mathcal{M}\left(G_{\tau}\right)$. For the space of flows on G, we introduce the distance function $\rho\left(m^{1}, m^{2}\right)=\sum_{i}\left|m_{i}^{1}-m_{i}^{2}\right|$, where m_{i}^{*} is a measure of the vertex i (or the cell $M(i)$).

Definition 4. A sequence of flows $\left\{m^{t}\right\}$ is said to converge if the sequence of projections $\left\{m^{k, \tau}\right\}$ converges in the distance ρ on each G_{τ} as $k \rightarrow \infty$.

THEOREM 2. If the sequence of flows $\left\{m^{t}\right\}$ converges, then the corresponding sequence of measures $\left\{\mu_{t}\right\}$ converges to an invariant measure in the weak topology.

Proof. On each symbolic image G_{τ} we fix the flow $m^{*, \tau}=\lim _{k \rightarrow \infty} m^{k, \tau}$. By construction, the flows $m^{*, \tau}$ are consistent, i.e. $s^{*}\left(m^{*, \tau+1}\right)=m^{*, \tau}$. According to Theorem 1, the consistent sequence $\left\{m^{*, \tau}\right\}$ generates the sequence $\left\{\mu_{*, \tau}\right\}$ that converges to an invariant measure μ in the weak topology.

We now show that the sequence $\left\{\mu_{t}\right\}$ converges to μ in the weak topology as well. Let $t=\tau+k$, let G_{τ} be the symbolic image with respect to a partition C_{τ}, and let $M(i)$ be the cells of C_{τ}. We have

$$
\int \phi d \mu_{t}-\int \phi d \mu=\sum_{i} \phi\left(x_{i}\right) m_{i}^{t}-\sum_{i} \phi\left(x_{i}^{*}\right) m_{i}^{*}
$$

where $m_{i}^{t}=\mu_{t}(M(i)), m_{i}^{*}=\mu(M(i))$, and the points x_{i} and x_{i}^{*} lie in $\overline{M(i)}$ and are determined by the mean value theorem applied to each $\overline{M(i)}$. By the assumption, we have that

$$
\begin{aligned}
\sum_{i}\left|m_{i}^{t}-m_{i}^{*}\right| & =\sum_{i}\left|\mu_{t}(M(i))-\mu^{*}(M(i))\right| \\
& =\sum_{i}\left|m^{k, \tau}(M(i))-m^{*, \tau}(M(i))\right| \\
& =\rho\left(m^{k, \tau}, m^{*, \tau}\right) \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. Hence

$$
\begin{aligned}
\left|\int \phi d \mu_{t}-\int \phi d \mu\right| & =\left|\sum_{i}\left[\phi\left(x_{i}\right)\left(m_{i}^{t}-m_{i}^{*}\right)+\left(\phi\left(x_{i}\right)-\phi\left(x_{i}^{*}\right)\right) m_{i}^{*}\right]\right| \\
& \leq\|\phi\| \sum_{i}\left|m_{i}^{t}-m_{i}^{*}\right|+\alpha\left(d_{t}\right) \sum_{i} m_{i}^{*} \\
& =\|\phi\| \rho\left(m^{k, \tau}, m^{*, \tau}\right)+\alpha\left(d_{\tau}\right),
\end{aligned}
$$

where $\|\phi\|=\sup _{M}|\phi(x)|, d_{\tau}$ is the maximal diameter of C_{τ} and $\alpha(d)$ is the modulus of continuity of the function ϕ.

To prove that $\mu_{t} \rightarrow \mu$ in the weak topology, it is enough to show that for a given function ϕ and an $\epsilon>0$, there is a number t_{0} such that

$$
\left|\int \phi d \mu_{t}-\int \phi d \mu\right|<\epsilon
$$

for $t>t_{0}$. For any given number $\epsilon / 2$ and function ϕ, we fix τ and $d_{\tau}>0$ so that $\alpha\left(d_{\tau}\right)<$ $\epsilon / 2$. For fixed values of $\tau, \epsilon / 2$ and $\|\phi\|$, we find k such that $\rho\left(m^{k, \tau}, m^{*, \tau}\right)<\epsilon /(2\|\phi\|)$ if $1 \leq\|\phi\|$ or $\rho\left(m^{k, \tau}, m^{*, \tau}\right)<\epsilon / 2$ if $\|\phi\|<1$. Set $t_{0}=\tau+k$. Then for $t>t_{0}$ we have

$$
\left|\int \phi d \mu_{t}-\int \phi d \mu\right| \leq\|\phi\| \rho\left(m^{k, \tau}, m^{*, \tau}\right)+\alpha\left(d_{\tau}\right)<\epsilon / 2+\epsilon / 2=\epsilon .
$$

Thus $\int \phi d \mu_{t} \rightarrow \int \phi d \mu$ as $t \rightarrow \infty$, and therefore the sequence of measures $\left\{\mu_{t}\right\}$ converges to μ in the weak topology.

If the sequence $\left\{m^{t}\right\}$ is consistent, i.e. if $s^{*}\left(m^{t+1}\right)=m^{t}$, then $m^{k, \tau}=m^{\tau}$ and the sequence of projections $\left\{m^{k, \tau}\right\}$ converges to m^{τ}. So, Theorem 2 is a generalization of Theorem 1. These theorems cannot, however, be applied to a sequence of general form. The next theorem describes the properties of an arbitrary sequence of flows.

THEOREM 3. Suppose that a sequence of symbolic images $\left\{G_{t}\right\}$ of the homeomorphism f and a sequence of flows $\left\{m^{t}\right\}$ are fixed and that $d_{t} \rightarrow 0$ as $t \rightarrow \infty$. Then:
(1) there exists a subsequence indexed by $t_{k} \rightarrow \infty$ such that $\mu_{t_{k}}$ (constructed via (9)) converges in the weak topology to a measure μ that is invariant with respect to f;
(2) if some subsequence of measures $\mu_{t_{l}}$ converges in the weak topology to a measure μ^{*}, then μ^{*} is invariant with respect to f.

Proof. Consider one of the symbolic images, G_{1}, say. The set of flows on G_{1} forms the convex polyhedron \mathcal{M}_{1}. Each flow $m=\left\{m_{i j}\right\}$ is represented by a point in R^{N} where N is
the number of vertices of \mathcal{M}_{1}. By means of the natural mapping $s^{*}: \mathcal{M}\left(G_{t}\right) \rightarrow \mathcal{M}\left(G_{1}\right)=$ \mathcal{M}_{1}, we transform the flows m^{t} on the graph G_{1} and denote the transformed flows by m_{1}^{t}, i.e. $m_{1}^{t}=s^{*}\left(m^{t}\right)$. So, on the compact set \mathcal{M}_{1}, we have the sequence $\left\{m_{1}^{t}\right\}$ from which we can take a convergent subsequence $\left\{m_{1}^{t_{k}}\right\}$. Let $m_{1}^{*}=\lim _{k \rightarrow \infty} m_{1}^{t_{k}}$. Next, consider the symbolic image G_{2}, for which we construct a flow m_{2}^{*} as the limit of some subsequence of the projections $s^{*}\left(m^{t_{k}}\right)$ on \mathcal{M}_{2}. Following this procedure, we construct the flow m_{t}^{*} on each symbolic image G_{t}. If we now take the diagonal subsequence $\left\{m^{t_{\tau}}\right\}$, then on each symbolic image G_{t} the sequence $s^{*}\left(m^{t_{\tau}}\right)$ converges to m_{t}^{*}. According to Theorem 2, the subsequence of measures $\mu_{t_{\tau}}$ converges to an invariant measure μ in weak topology. Thus, assertion (1) of the theorem is proved.

To prove the second assertion, suppose that there is a subsequence of measures that is convergent to μ in the weak topology. Without loss of generality we can assume that the original sequence converges to μ. By assertion (1), we can take a subsequence $\left\{\mu_{t_{k}}\right\}$ that converges to an invariant measure μ^{*}. Hence $\mu^{*}=\mu$ by uniqueness of the limit, and μ is invariant. The theorem is thus proved.

The results we have obtained are applicable to sequences of flows on symbolic images with $d_{k} \rightarrow 0$. In practice, it is desirable to have results concerning an individual flow on a symbolic image for a small positive diameter d.

Theorem 4. For any neighborhood U (in weak topology) of the set $\mathcal{M}(f)$, there exists a positive d_{0} such that for any partition C with the maximal diameter of cells satisfying $d<d_{0}$ and any flow m on the symbolic image G constructed with respect to C, the measure μ (constructed via m and (9)) lies in U.

Proof. Suppose, to the contrary, that there exists a neighborhood U of $\mathcal{M}(f)$ such that for any partition C_{k} with maximal diameter d_{k} on the symbolic image G_{k} there is a flow m_{k} for which the measure μ_{k} does not lie in U. We may assume that $d_{k} \rightarrow 0$. According to the previous theorem, there exists a subsequence $\left\{m_{k_{p}}\right\}$ such that the subsequence of measures $\left\{\mu_{k_{p}}\right\}$ constructed via (9) converges to an invariant measure $\mu \in \mathcal{M}(f)$. This means that for some number $k_{p_{0}}$, the subsequence $\mu_{k_{p}}$ with $p>p_{0}$ is in U, which is a contradiction.

Theorem 4 guarantees that any measure constructed by means of a symbolic image is a good approximation of some invariant measure, provided that the diameter of the partition is small enough. In practice, we can construct no more than a finite number of symbolic images, hence the obtained result provides a basis for practical computation. Moreover, this theorem allows us to consider the set $\mathcal{M}(G)$ of all flows on a symbolic image G as an approximation of the set of invariant measures $\mathcal{M}(f)$, provided that the diameter of the partition is small enough.

4. Stochastic Markov chains

A stochastic Markov chain [11] is defined by a collection of states $\{i=1,2, \ldots n\}$ together with probabilities $P_{i j}$ of transition from state i to state j. The matrix of transition probabilities, $P=\left(P_{i j}\right)$, is a stochastic matrix, i.e. $P_{i j} \geq 0$ and $\sum_{j} P_{i j}=1$ for each i. A probability distribution $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, with $\sum_{i} p_{i}=1$, is stationary if p is a
left fixed vector of the matrix P. It should be noted (see, e.g., [9]) that a stochastic matrix is sometimes defined as the transpose of that described above, in which case a stationary distribution would be a right eigenvector.

Each flow $m=\left\{m_{i j}\right\}$ on a graph G generates a stochastic Markov chain such that the states $\{i\}$ are vertices $\left\{i \mid m_{i} \neq 0\right\}$ and the transition probability $i \rightarrow j$ is given by

$$
P_{i j}=m_{i j} / m_{i} .
$$

The resulting stochastic matrix $P=\left(m_{i j} / m_{i}\right)$ has a stationary distribution of the form $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$. So any flow $m=\left\{m_{i j}\right\}$ on a graph G generates a stochastic Markov chain for which the distribution $\left(m_{i}\right)$ of measures of vertices is stationary.

It turns out that the converse is also true: for any stochastic matrix $P=\left(P_{i j}\right)$ and associated stationary distribution $p=\left(p_{i}\right)$, there exists a flow $m=\left\{m_{i j}\right\}$ such that the distribution of measures on vertices is $m_{i}=p_{i}$. In fact, let P be a stochastic matrix and suppose that $p P=p$. Consider a graph G with n vertices $\{i\}$ and edges $\left\{i \rightarrow j\right.$ if $\left.P_{i j}>0\right\}$. Let us construct a distribution on the edges of the form $m_{i j}=P_{i j} p_{i}$ and prove that the constructed distribution is a flow on G. Since P is a stochastic matrix, we have the equality $\sum_{j} P_{i j}=1$ for each i. It follows that

$$
\sum_{j} m_{i j}=\sum_{j} P_{i j} p_{i}=p_{i} \sum_{j} P_{i j}=p_{i} .
$$

Since $p P=p$, we have $\sum_{k} p_{k} P_{k i}=p_{i}$ for each i. Thus we obtain

$$
\sum_{k} m_{k i}=\sum_{k} p_{k} P_{k i}=p_{i}=\sum_{j} m_{i j}
$$

i.e. Kirchhoff's law is valid for the distribution $m_{i j}$. Moreover, $\sum_{i j} m_{i j}=\sum_{i} p_{i}=1$.
$>$ From the above it follows that the flow technology on the graph is equivalent to the stochastic-matrix method. The papers $[\mathbf{3}, \mathbf{4}, \mathbf{6}, 7]$ use a stochastic matrix of the form

$$
P_{i j}=v\left(M(i) \cap f^{-1}(M(j))\right) / v(M(i)),
$$

where v is Lebesgue measure and the $M(i)$ are cells of a partition. In these papers, the SBR measure is constructed via the stochastic-matrix method under some additional conditions. It is clear that the construction of a stochastic matrix through a non-Lebesgue measure leads, in general, to an invariant measure that differs from SBR measure. For example, a stochastic matrix can be obtained from the zero-one matrix $\Pi=\left(\pi_{i j}\right)$ where $\pi_{i j}=1$ if the edge $i \rightarrow j$ exists and $\pi_{i j}=0$ otherwise. By setting $P_{i j}=\pi_{i j} /\left(\sum_{k} \pi_{i k}\right)$, we get a stochastic matrix, a flow and an approximation of an invariant measure.

5. The balance method

We have considered the construction of a flow on a graph based on a collection of periodic paths. Now we look at another method, which allows us to obtain an invariant flow from any non-invariant distribution in an iterative manner. Let the matrix $P=\left(p_{i j}\right)$ be an arbitrary distribution of non-negative values on the edges of a graph G. The set of edges $G\left(P^{+}\right)=\left\{i \rightarrow j \mid p_{i j}>0\right\}$ taking positive values of P is called the support of P. We will
construct a flow on the support $G\left(P^{+}\right)$. From what we have shown above, the support necessarily has to contain a periodic path in order for a flow on $G\left(P^{+}\right)$to exist.

Let G be a graph with n vertices. A matrix $x=\left(x_{i j}\right)$ is a flow on G if the following conditions are satisfied:

- $\quad x_{i j} \geq 0$;
- $\quad \sum_{i j} x_{i j}=1$;
- $\quad \sum_{j} x_{i j}=\sum_{k} x_{k i}$ for $i=1,2, \ldots, n$.

Moreover, we require that the support of x be in $G\left(P^{+}\right)$, i.e. that $x_{i j}=0$ if $p_{i j}=0$. A similar computational task arises in the theory of convex programming. Our discussion is based on the paper [2], in which the method we need is substantiated. The task of computing a flow on a graph may be considered as a special example of a transport problem. The Leningrad architect G. V. Sheleikhovsky solved such a problem in the 1940s [15] by using the balance method. Starting from an arbitrary distribution, he recalculated the distribution in a sequential way such that at each step only one equality is required to be satisfied while the others escape attention. By repeating such a process in a cyclic manner, he obtained a sequence of distributions that converged rapidly to the desired solution. We shall solve our task in the same way.

PROPOSITION 6. Let $P=\left(p_{i j}\right)$ be an arbitrary non-negative distribution on G such that $G\left(P^{+}\right)$contains a periodic path. Then there exists an algorithm that constructs the flow $Q=\left(q_{i j}\right)$ on G, with $G\left(Q^{+}\right) \subset G\left(P^{+}\right)$, which maximizes the function

$$
g(x)=\sum_{i j} x_{i j} \ln \frac{p_{i j}}{x_{i j}}=\sum_{i j} x_{i j} \ln p_{i j}-\sum_{i j} x_{i j} \ln x_{i j}
$$

in the space of flows on $G\left(P^{+}\right)$.
Proof. Let d be the number of the edges of the graph $G\left(P^{+}\right)$, with $d \leq n^{2}$. If the elements with $p_{i j}>0$ are put in sequential order $(i j) \rightarrow k=1,2, \ldots, d$ (for instance, row by row from top to bottom), then x can be considered as a point in the space $S=\left\{x \in \mathbb{R}^{d} \mid x_{k}=x_{i j}>0\right\}$. Set

$$
\begin{aligned}
B_{0} & =\left\{x \in R^{d} \mid x_{i j} \geq 0, \sum_{i j} x_{i j}=1\right\}, \\
B_{i} & =\left\{x \in R^{d} \mid x_{i j} \geq 0, \sum_{j} x_{i j}=\sum_{k} x_{k i}\right\}
\end{aligned}
$$

for $i=1,2, \ldots, n$. The intersection $D=\bigcap_{i} B_{i} \cap B_{0}$ is a compact set that lies in the closure \bar{S}; hence the function g reaches its maximum on D. Our goal is to find the point at which the maximum is attained. In [2], the following problem of convex programming was solved.

Let $f(x)$ be a strictly convex function that is continuously differentiable on a convex set $S \subset \mathbb{R}^{d}$ and continuous on \bar{S}. It is required to minimize the function f under the linear restrictions

$$
A x=b, \quad x \in \bar{S},
$$

where $b \in \mathbb{R}^{m}$ and A is a matrix with r columns and m rows.

We shall apply the results of [2] to the function $f=-g$, which is strictly convex. Our linear restrictions consist of $n+1$ equations; the first of these gives the normalization

$$
\begin{equation*}
\sum_{i j} x_{i j}=1, \tag{12}
\end{equation*}
$$

and the next n equations describe the invariance (Kirchhoff's law):

$$
\begin{equation*}
\sum_{j} x_{i j}-\sum_{k} x_{k i}=0, \quad i=1,2, \ldots, n . \tag{13}
\end{equation*}
$$

The necessary condition for existence of a solution to the optimization task is the existence of a solution to the system (12-13). The existence of a periodic path in $G\left(P^{+}\right)$guarantees that there is a flow on $G\left(P^{+}\right)$which is the solution needed.

Consider the following iteration steps.
(1) Take an arbitrary point (matrix) $x^{0} \in S$.
(2) If a point x^{t} is known, choose the p_{t} th equation and find a point $x^{t+1} \in B_{p_{t}}$ that satisfies this equation but which may not satisfy the others. The method of computing such a point will be described later.
In the iterative loop we have to take all $n+1$ equations. The sequence $\left\{x^{t}\right\}$ thus obtained is called a relaxation sequence, and the index sequence $\left\{p_{t}\right\}$ is called a relaxation control. It is possible to take the relaxation control in ordinary cyclic order, i.e. first solve the normalization equation and then take consecutive invariance equations.

It was shown in [2] that for $\left\{x^{t}\right\}$ to solve the extremum problem the points x^{t+1} and x^{t} have to satisfy the following system of equations:

$$
\begin{gather*}
\operatorname{grad} f\left(x^{t+1}\right)=\operatorname{grad} f\left(x^{t}\right)+\lambda A_{p}, \tag{14}\\
\left(A_{p}, x^{t+1}\right)=b_{p}, \tag{15}
\end{gather*}
$$

where $\operatorname{grad} f$ is the gradient of f, λ is an unknown parameter, $\left({ }^{*}, *\right)$ denotes the inner product, A_{p} is the row of the left-hand side of the p th equation, and b_{p} is the right-hand side of the same equation. In other words, x^{t+1} is a solution of the p th equation. For the function

$$
f(x)=-g(x)=\sum_{i j} x_{i j} \ln x_{i j} / p_{i j},
$$

we have

$$
(\operatorname{grad} f(x))_{i j}=\ln \frac{x_{i j}}{p_{i j}}+1
$$

For the normalizing equation (12), we get the system

$$
\begin{gathered}
\ln \frac{x_{i j}^{t+1}}{p_{i j}}=\ln \frac{x_{i j}^{t}}{p_{i j}}+\lambda, \\
\sum_{i j} x_{i j}^{t+1}=1 .
\end{gathered}
$$

Hence we obtain the ordinary transformation of normalization,

$$
\begin{equation*}
x_{i j}^{t+1}=\frac{x_{i j}^{t}}{\sum_{k l} x_{k l}^{t}} . \tag{16}
\end{equation*}
$$

For the i th equation of the invariance (13), we get the following system of equations:

$$
\begin{aligned}
\ln \frac{x_{i j}^{t+1}}{p_{i j}} & =\ln \frac{x_{i j}^{t}}{p_{i j}}+\lambda \\
\ln \frac{x_{k i}^{t+1}}{p_{k i}} & =\ln \frac{x_{k i}^{t}}{p_{k i}}-\lambda, \\
\sum_{j \neq i} x_{i j}^{t+1} & -\sum_{k \neq i} x_{k i}^{t+1}=0 .
\end{aligned}
$$

Then

$$
\exp \lambda=\left(\frac{\sum_{k \neq i} x_{k i}^{t}}{\sum_{j \neq i} x_{i j}^{t}}\right)^{\frac{1}{2}}
$$

and we obtain the transformation in the form

$$
\begin{equation*}
x_{i j}^{t+1}=x_{i j}^{t}\left(\frac{\sum_{m \neq i} x_{m i}^{t}}{\sum_{l \neq i} x_{i l}^{t}}\right)^{\frac{1}{2}} \tag{17}
\end{equation*}
$$

for $j \neq i$,

$$
\begin{equation*}
x_{k i}^{t+1}=x_{k i}^{t}\left(\frac{\sum_{l \neq i} x_{i l}^{t}}{\sum_{m \neq i} x_{m i}^{t}}\right)^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

for $k \neq i$, and

$$
\begin{equation*}
x_{i i}^{t+1}=x_{i i}^{t} . \tag{19}
\end{equation*}
$$

The formulas (17), (18) and (19) describe the transformation of the i th row and i th column of the matrix x^{t} in step t. The other elements of x^{t} do not change. According to [2], the sequence thus obtained has a limit if the function

$$
D(x, y)=f(x)-f(y)-(\operatorname{grad} f(y), x-y)
$$

is such that $D\left(x, y^{k}\right) \rightarrow 0$ when $x \in \bar{S}, y^{k} \rightarrow x$ and $y^{k} \in S$. In our case,

$$
D(x, y)=\sum_{i j}\left(y_{i j}-x_{i j}\right)+\sum_{i j} x_{i j} \ln x_{i j}-\sum_{i j} x_{i j} \ln y_{i j},
$$

and the property is easily checked. Moreover, in this case (see [2]) the limit does not depend on the relaxation control but only on the initial value x^{0}. For the limit value

$$
Q=\lim _{t \rightarrow \infty} x^{t},
$$

to solve the extremum problem it suffices to take the initial value as the point of the global minimum of f, i.e. to set $x_{i j}^{0}=p_{i j} \exp (-1)$. Taking into account the normalization, we can start the iteration process with

$$
\begin{equation*}
x_{i j}^{0}=p_{i j} \tag{20}
\end{equation*}
$$

and the proposition is proved.

Consider a relaxation control that results in fast convergence to the desired solution. Let $x=\left(x_{i j}\right)$ be an arbitrary non-negative distribution on the edges of G. We give an index $i=0,1, \ldots, n$ to each of the equations in (2) and (3) so that $i=0$ corresponds to the normalization equation (3) and each $i>0$ corresponds to the invariance property for the i th vertex. For the matrix $x=\left(x_{i j}\right)$ and each i, we determine the residual

$$
\begin{gathered}
a_{0}=\left|1-\sum_{i j} x_{i j}\right| \\
a_{i}=\left|\sum_{j} x_{i j}-\sum_{k} x_{k i}\right|, \quad i>0
\end{gathered}
$$

Proposition 7. Let the hypotheses of the previous proposition be fulfilled. Select the initial distribution

$$
x_{i j}^{0}=p_{i j}
$$

and the relaxation control such that for each x^{t}, the index p_{t} realizes the maximum of the residual:

$$
a_{p_{t}}=\max \left\{a_{i}: i=0,1, \ldots, n\right\}
$$

When $p_{t}=0, x^{t+1}$ is defined by (16); when $p_{t}>0, x^{t+1}$ is defined by (17)-(19) where $i=p_{t}$. Then the obtained sequence converges to the flow $Q=\left(q_{i j}\right)$ which maximizes the function

$$
g(x)=\sum_{i j} x_{i j} \ln \frac{p_{i j}}{x_{i j}}=\sum_{i j} x_{i j} \ln p_{i j}-\sum_{i j} x_{i j} \ln x_{i j}
$$

in the space of flows on $G\left(P^{+}\right)$, with $G\left(Q^{+}\right) \subset G\left(P^{+}\right)$.
This proposition was proved in a more general form in [2]. Moreover, as mentioned above, in our case the limit value $Q=\left(q_{i j}\right)$ does not depend on the relaxation control but only on the initial value. The proposition is useful in regard to computational practice, since it offers a possibility of increasing, essentially, the speed of convergence. Notice that since the transformations (16)-(19) contain the normalization, an initial value $L x^{0}, L>0$, that is proportional to the original one will give the same limit value Q. In computing applications of the balance method, one must remember that it is necessary for a support of any flow to be in the set of recurrent edges. It follows that the support of the initial value has to be in the same set and, moreover, that it is enough to construct a flow on each strongly connected component and then take the linear hull of these flows, if needed.

Example 1. The maximum flow on a graph.
Consider the zero-one adjacency matrix $\Pi=\left(\pi_{i j}\right)$ of the graph G, i.e. $\pi_{i j}=1$ if the edge $i \rightarrow j$ exists and $\pi_{i j}=0$ otherwise. Let us apply Proposition 6 or Proposition 7 with $P=\Pi$ and initial value $x^{0}=\Pi$. As a result of the normalization we get $x^{1}=\Pi / N$, where N is the number of edges of the graph G. According to the propositions, the relaxation sequence converges to the distribution $Q=\left(q_{i j}\right)$, which is a flow on G that maximizes the function

$$
g(x)=-\sum_{i j} x_{i j} \ln x_{i j}
$$

on the set of all flows $\mathcal{M}(G)$. Notice that if the normalization condition is satisfied but not the Kirchhoff law, the maximum of g is obtained from $x_{i j}=$ const $=\pi_{i j} / N$, in which case $g_{\max }=\ln N$. If all the conditions are satisfied, then the flow Q maximizing the function g will be close to $x_{i j}=$ const, i.e. Q is distributed to the maximal possible extent on G.

Example 2. Application of the balance method to the Ikeda mapping.
The Ikeda mapping arises in the modeling of optical recording media (crystals) [8] and is of the form

$$
\begin{gather*}
\binom{x}{y} \rightarrow\left(\begin{array}{c}
\left.d+\begin{array}{l}
a(x \cos \tau(x, y)-y \sin \tau(x, y)) \\
b(x \sin \tau(x, y)+y \cos \tau(x, y))
\end{array}\right), \\
\tau(x, y)=0.4-\frac{6}{1+x^{2}+y^{2}},
\end{array},\right. \tag{21}
\end{gather*}
$$

where $d>0,0<a<1$ and $0<b<1$. The mapping contracts area and has a global attractor. In $[\mathbf{1 3}, \mathbf{1 4}]$ it was shown that if $d=2, a=-0.9$ and $b=0.9$, then the mapping switches the orientation and has a global attractor in the domain $M=[-10,10] \times$ $[-10,10]$.

To locate the global attractor, we use ten subdivisions and construct the sequence of symbolic images G_{1}, \ldots, G_{10}. In the top picture of Figure 1, the covering of the attractor lies in the (x, y) plane. It is constructed on G_{10} and consists of 96543 cells of size 0.019×0.019. The invariant flow is constructed on G_{10} by using the balance method with adjacency matrix Π as the initial value. The relaxation method leads to the matrix $Q=\left(q_{i j}\right)$ of size 96543×96543 which maximizes the function $g(x)=-\sum_{i j} x_{i j} \ln x_{i j}$. The distribution of the invariant measure is shown in the bottom picture of Figure 1, where the measure of each cell is represented by the z-value. Since Q maximizes the function g, the invariant measure is distributed to the maximum allowable extent on the attractor.

This numerical experiment was performed by postgraduate student E. Petrenko at St. Petersburg University.

Example 3. Estimation of entropy.
Now we use the technique we have developed to estimate the entropy with respect to a measure. Suppose an invariant flow $m=\left\{m_{i j}\right\}$ is constructed on a symbolic image G of the mapping f. As remarked earlier, the flow m can be considered as an approximation of an invariant measure μ if the diameter d is small enough. The flow m on G generates a Markov chain [11, pp. 47 and 328] whose states are the vertices of G and whose transition probabilities are

$$
p_{i j}=\frac{m_{i j}}{m_{i}}, \quad m_{i}=\sum_{j} m_{i j} .
$$

Under these conditions, the probability matrix $P=\left(p_{i j}\right)$ has a stationary distribution ($m_{1}, m_{2}, \ldots, m_{n}$).

The entropy for the stationary distribution is computed by the formula

$$
h_{m}=-\sum_{i} m_{i} \sum_{j} p_{i j} \ln p_{i j}
$$

Figure 1. The balance method for the modified Ikeda mapping.
(see [11, p. 443]). Upon substituting $p_{i j}=m_{i j} / m_{i}$, we find that

$$
\begin{equation*}
h_{m}=-\sum_{i j} m_{i j} \ln m_{i j}+\sum_{i} m_{i} \ln m_{i} . \tag{23}
\end{equation*}
$$

Thus, the entropy can be calculated directly via the flow $m=\left\{m_{i j}\right\}$ The entropy of f with respect to the invariant measure μ can be estimated by the formula (23), where the flow m approximates μ. However, justifying this method for arbitrary f is a problem (although, with hyperbolic structure for f, the estimation of entropy through SBR measures is wellknown [4, 7, 16]).

References

[1] M. Blank, G. Keller and C. Liverani. Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15 (2002), 1905-1973.
[2] L. M. Bregman. Relaxation method for determination of the common point of the convex sets and its application to problems of convex programming. J. Comput. Math. Math. Phys. 7(3) (1967), 630-631.
[3] M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2) (1999), 491-515.
[4] J. Ding and A. Zhou. Finite approximation of Frobenius-Perron operators, a solution of Ulam's conjecture to multi-dimensional transformation. Phys. D 92(1-2) (1996), 61-66.
[5] G. Froyland. Finite approximation of Sinai-Bowen-Ruelle measures for Anosov systems in two dimensions. Random and Computational Dynamics 3(4) (1995), 251-263.
[6] G. Froyland. Approximating physical invariant measures of mixing dynamical systems in higher dimensions. Nonlinear Anal. 32(7) (1998), 831-860.
[7] G. Froyland. Using Ulam's method to calculate entropy and other dynamical invariants. Nonlinearity 12 (1999), 79-101.
[8] K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Comm. 30 (1979), 257-261.
[9] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.
[10] N. Kryloff and N. Bogollouboff. La theorie generale de la mesure dans son application a l'etude das systemes dynamiques de la mecanique non lineaire. Ann. of Math. 38(1) (1937), 65-113.
[11] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.
[12] G. Osipenko. On a symbolic image of dynamical system. Boundary Value Problems Perm (1983), 101-105.
[13] G. Osipenko. Numerical explorations of the Ikeda mapping dynamics. Electron J. Differential Equations and Control Processes 2 (2004), 43-67. http://www.neva.ru/journal.
[14] G. Osipenko. Dynamical Systems, Graphs, and Algorithms (Lecture Notes in Mathematics, 1889). Springer, Berlin, 2007.
[15] G. V. Sheleikhovsky. Composition of city plan as a transport problem. Manuscript, 1946.
[16] L. Tien-Yien. Finite approximation for the Frobenius-Perron operator, a solution to Ulam's conjecture. J. Approx. Theory 17 (1976), 177-186.
[17] S. Ulam. Problems in Modern Mathematics. Interscience, New York, 1960.

AUTHOR QUERIES

Please reply to these questions on the relevant page of the proof; please do not write on this page.

Q1 (page 1)

Please provide/check complete affiliation of author.

Q2 (page 2)
An extra closing bracket has been deleted from here. Please check.

Q3 (page 21)
Ref. [1] not cited in text. Please check.
Q4 (page 21)
Please clarify the word 'Perm' given along with the book title of Ref. [12]. Also provide publisher and location of publication.

