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Abstract. We consider a weak convergence of the power divergence family of statistics

fTlðYÞ; l A Rg constructed from the multinomial distribution of degree k, to chi-squared

distribution with k � 1 degrees of freedom. We show that

PrðTlðYÞ < cÞ ¼ Gk�1ðcÞ þOðn�1þ1=kÞ

where GrðcÞ is the distribution function of a chi-squared variable with r degrees of

freedom. In the proof we use E. Hlawka’s theorem (1950) on the approximation of a

number of integer points in a convex set with a closed smooth boundary by a volume of

the set.

1. Introduction and the main result

1.1. Introduction. Consider a vector ðY1; . . . ;YkÞT with multinomial distri-

bution Mkðn; pÞ, i.e.

PrðY1 ¼ n1; . . . ;Yk ¼ nkÞ ¼
n!
Qk

j¼1ðp
nj
j =nj!Þ; nj ¼ 0; 1; . . . ; n ð j ¼ 1; . . . ; kÞ

and
Pk

j¼1 nj ¼ n;

0; otherwise;

8><
>:

where p ¼ ðp1; . . . ; pkÞT , pj > 0,
Pk

j¼1 pj ¼ 1. From this point on, we will

assume the validity of the hypothesis H0 : p ¼ p. Since the sum of ni equals

n, we can express this multinomial distribution in terms of a vector Y ¼
ðY1; . . . ;Yk�1Þ and define its covariance matrix W. It is known that so defined

W equals ðd j
i pi � pipjÞ A Rðk�1Þ�ðk�1Þ. The main object of the current study is

the power divergence family of statistics:

tlðYÞ ¼ 2

lðlþ 1Þ
Xk
j¼1

Yj

Yj

npj

� �l
� 1

" #
; l A R;
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Remark 1. When l ¼ 0;�1, this notation should be understood as a result

of passage to the limit.

Remark 2. These statistics were first introduced in [8] and [9] being

denoted by 2nI lðYÞ. Putting l ¼ 1, l ¼ �1=2 and l ¼ 0 we can obtain the

chi-squared statistic, the Freeman-Tukey statistic, and the log-likelihood ratio

statistic respectively.

We consider transformation

Xj ¼ ðYj � npjÞ=
ffiffiffi
n

p
; j ¼ 1; . . . ; k; r ¼ k � 1; X ¼ ðX1; . . . ;XrÞT :

Herein the vector X is the vector whose components are reduced to the lattice,

L ¼ x ¼ ðx1; . . . ; xrÞT ; x ¼ m� npffiffiffi
n

p ; p ¼ ðp1; . . . ; prÞT ;m ¼ ðn1; . . . ; nrÞT
� �

;

where nj are non-negative integers.

Remark 3. The statistic tlðYÞ can be expressed as a function of X in the

form

TlðxÞ ¼
2n

lðlþ 1Þ
Xk
j¼1

pj 1þ xjffiffiffi
n

p
pj

� �lþ1

� 1

 !" #
; ð1Þ

and then, via the Taylor’s expansion, transformed to the form

TlðxÞ ¼
Xk
i¼1

x2
i

pi
þ ðl� 1Þx3

i

3
ffiffiffi
n

p
p2i

þ ðl� 1Þðl� 2Þx4
i

12p3i n
þOðn�3=2Þ

� �
: ð2Þ

We call a set BHRr extended convex set, if for for all l ¼ 1; r it can be

expressed in the form:

B ¼ fx ¼ ðx1; . . . ; xrÞT : llðx�Þ < xl < ylðx�Þ and

x� ¼ ðx1; . . . ; xl�1; xlþ1; . . . ; xrÞT A Blg;

where Bl is some subset of Rr�1 and llðx�Þ, ylðx�Þ are continuous functions on

Rr�1. Additionally, we introduce the following notation

½hðxÞ�ylðx
�Þ

llðx �Þ ¼ hðx1; . . . ; xl�1; ylðx�Þ; xlþ1; . . . ; xrÞ

� hðx1; . . . ; xl�1; llðx�Þ; xlþ1; . . . ; xrÞ:

It is a known fact that the distributions of all statistics in the family

converge to chi-squared distribution with k � 1 degrees of freedom (see e.g. [8],
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p. 443). However, more intriguing is the problem of the estimation of the rate

of convergence to the limiting distribution.

For any bounded extended convex set B J. Yarnold in [1] obtained an

asymptotic expansion, which in [5] was converted to

PrðX A BÞ ¼ J1 þ J2 þOðn�1Þ: ð3Þ

with

J1 ¼
ð
. . .

ð
B

fðxÞ 1þ 1ffiffiffi
n

p h1ðxÞ þ
1

n
h2ðxÞ

� �
dx; where

h1ðxÞ ¼ � 1

2

Xk
j¼1

xj

pj
þ 1

6

Xk
j¼1

xj
xj

pj

� �2
;

h2ðxÞ ¼
1

2
h1ðxÞ2 þ

1

12
1�

Xk
j¼1

1

pj

 !
þ 1

4

Xk
j¼1

xj

pj

� �2
� 1

12

Xk
j¼1

xj
xj

pj

� �3
;

J2 ¼ � 1ffiffiffi
n

p
Xr

l¼1
n�ðr�lÞ=2

X
xlþ1 ALlþ1

. . .
X

xr ALr

�
ð
. . .

ð
Bl

½S1ð
ffiffiffi
n

p
xl þ nplÞfðxÞ�ylðx

�Þ
llðx�Þdx1; . . . ; dxl�1

� �
; ð4Þ

Lj ¼ x : xj ¼
nj � npjffiffiffi

n
p ; nj and pj defined as before

� �
;

S1ðxÞ ¼ x� bxc � 1=2; bxc is the integer part of x;

fðxÞ ¼ 1

ð2pÞr=2jWj1=2
exp � 1

2
xTW�1x

� �
:

Remark 4. In [1] Yarnold showed that J2 ¼ Oðn�1=2Þ.

Remark 5. Using elementary transformations it can be easily shown that

the determinant of the matrix W equals
Qk

i¼1 pi.

Yarnold also examined this expansion for the most known power diver-

gence statistic, which is the chi-squared statistic. Define Bl as fx jTlðxÞ < cg.
It is easy to show that B1 is an ellipsoid, which is a particular case of a

bounded extended convex set. J. Yarnold managed to simplify the item (4) in

this simple case and converted the expansion (3) to

PrðX A B1Þ ¼ GrðcÞ þ ðN 1 � nr=2V 1Þe�c=2
.

ð2pnÞr
Yk

j¼1
pj

� 	1=2
þOðn�1Þ; ð5Þ
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where GrðcÞ is the chi-squared distribution function with r degrees of freedom;

N 1 is the number of points of the lattice L in B1; V 1 is the volume of B1.

Using the result of Esseen [7], he obtained an estimate of the second item in (5)

in the form Oðn�ðk�1Þ=kÞ.
M. Siotani and Y. Fujikoshi in [5] showed that, when l ¼ 0, l ¼ �1=2, we

have

J1 ¼ GrðcÞ þOðn�1Þ

J2 ¼ ðN l � nr=2V lÞe�c=2
.

ð2pnÞr
Yk

j¼1
pj

� 	1=2
þ oð1Þ; ð6Þ

V l ¼ V 1 þOðn�1Þ:

Here similar to (5) N l denotes the number of points of the lattice L in Bl; V l

is the volume of Bl.

These results were expanded by T. Read to the case l A R. In particular

Theorem 3.1 in [9] implies

Pr Tl < cð Þ ¼ Pr w2r < c

 �

þ J2 þOðn�1Þ: ð7Þ

This reduces the problem to the estimation of the order of J2.

It is worth mentioning that papers [5] and [9] do not estimate the residual

in (6). Consequently, it was impossible to construct estimates of the rate of

convergence of statistics Tl to the limiting distribution, grounded on the simple

representation for J2 initially suggested by J. Yarnold.

In this paper for any power divergence statistic we eliminated lapses of

papers [5] and [9] pinpointed in the previous paragraph. Then we constructed

an estimate for J2 based on the fundamental number theory result of E.

Hlawka [12].

The paper is divided into two parts. In the first one (section 2) we discuss

the possibility to reduce J2 and to convert it to the form (6). At that we

accentuate correct estimation of the error of such transformation. In the

second part (section 3) we investigate the applicability of the afore-mentioned

theorem from number theory to the set Bl.

1.2. The main result. Below in lemmas 13, 5, and 2 it is shown that Bl ¼
fx jTlðxÞ < cg is a bounded extended-convex (strictly convex) set. In accor-

dance with the results of J. Yarnold [1]

J2 ¼ Oðn�1=2Þ:

For the specific case of r ¼ 2 this estimate has been considerably refined in [11]:

J2 ¼ Oðn�50=73ðlog nÞ315=146Þ:
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In this paper we generalize the estimates of [11] to any dimension. We

utilize proposition 9 of [12].

Theorem 1 (E. Hlawka, 1950). Let D be a compact convex set in Rm with

the origin as its inner point. We denote the volume of this set by A. Assume

that the boundary C of this set is an ðm� 1Þ-dimensional surface of class Cy, the

Gaussian curvature being non-zero and finite everywhere on the surface. Also

assume that a specially defined canonical map from the unit sphere to D is one-

one and belongs to the class Cy. Then in the set that is obtained from the

initial one by translation along an arbitrary vector and by linear expansion with

the factor M the number of integer points is

N ¼ AMm þOðIMm�2þ2=ðmþ1ÞÞ

where the constant I is a number dependent only on the properties of the

boundary, but not on the parameters M or A.

Remark 6. In [11] we used the result of Huxley (1993) (see [3]) which is

stronger than Hlawka result when m ¼ 2.

The above theorem is applicable in the current paper with M ¼
ffiffiffi
n

p
.

Therefore, for any fixed l we have to deal not with a single set, but rather with

a sequence of sets BlðnÞ converging in some sense to the limiting set B1 when

n ! y. The type of this convergence will be elaborated in the sequel. At

present it is worth noting that the constant I in our case, generally speaking, is

dependent on n. Only having ascertained the fulfillment of the inequality

jIðnÞjcC0;

where C0 is an absolute constant, we are able to apply Theorem 1 without a

change of the overall order of the error with respect to n. This statement will

be proven in a separate lemma.

In the paper we prove the following estimate of J2 in the space of any

fixed dimension rd 3.

Theorem 2. For the term J2 from decomposition (7) the following estimate

holds

J2 ¼ Oðn�1þ1=ðrþ1ÞÞ; rd 3; ð8Þ

Corollary 1. For the statistic TlðxÞ defined by formula (1) it holds that

PrðTlðxÞ < cÞ ¼ GrðcÞ þOðn�1þ1=ðrþ1ÞÞ; for rd 3:

Remark 7. In the case of Karl Pearson chi-squared statistics, i.e. when

l ¼ 1, using result of Götze for ellipsoids (see [4]) and applying Yarnold’s

arguments from [1] one can show (see [2]) that

PrðT1ðxÞ < cÞ ¼ GrðcÞ þOðn�1Þ; for rd 5:
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2. Reduction of the term J2 to a simplified form

Let N l be the number of lattice points of

L ¼ x : xj ¼
mj � npjffiffiffi

n
p ;mj A Z; j ¼ 1; r

� �
;

in Bl and V l is the volume of Bl.

Theorem 3. The item J2 can be expressed in the form

J2 ¼ dn�r=2ðN l � nr=2V lÞ þOðn�1Þ; ð9Þ

where

d ¼ ecð2pÞr
Yk

j¼1
pj

� 	�1=2

:

Before we present the proof for this theorem, let us prove some auxiliary

statements.

2.1. Some auxiliary facts from di¤erential geometry. We shall use some

notions from di¤erential geometry, see e.g. Ch. 3 in [10].

Theorem 4. Let f : Rn ! R1 be a mapping of class Cy, Mc ¼
fx : f ðxÞ ¼ cg. If the gradient of f is non-zero at each point on the set

Mc, then Mc is a smooth ðn� 1Þ-dimensional manifold of class Cy.

Proof. See [10], Ch. 3, § 3, Theorem 2.

Remark 8. The assumptions of the theorem are still met if the mapping f

is given on the set QHRn where QIMc.

2.2. Preliminary lemmas.

Lemma 1. There exist such positive coe‰cients a1ðl; pÞ; a2ðl; pÞ; . . . ;
akðl; pÞ and positive numbers c1; c2; . . . ; ck that

TlðxÞd a1x
2
1 þ a2x

2
2 þ � � � þ akx

2
k � c1 � c2 � � � � � ck:

Proof. It follows from the straightforward analysis of the functions of

one variable:

flðxÞ ¼
2np

lðlþ 1Þ 1þ xffiffiffi
n

p
p

� �lþ1

� 1

 !

for l B f�1; 0g and
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f�1ðxÞ ¼ �2np ln 1þ xffiffiffi
n

p
p

� �
;

f0ðxÞ ¼ 2np 1þ xffiffiffi
n

p
p

� �
ln 1þ xffiffiffi

n
p

p

� �
:

Lemma 2. The set Bl ¼ fx jTlðxÞ < cg is bounded.

Proof. It follows from Lemma 1 that for any l A R and i ¼ 1; . . . ; k

jxijc cþ
Xk
l¼1

cl

 !1=2
a
�1=2
i ðl; pÞ:

Lemma 3. Let W�1 be an inverse matrix to the covariance matrix of Y , and

let the range of coordinates xi be bounded. Then the statistic TlðxÞ can be

expressed as TlðxÞ ¼ ðW�1ðn; xÞx; xÞ, where W�1
ij ðn; xÞ ¼ W�1

ij þOðn�1=2Þ uni-

formly in x.

Proof. By Taylor’s expansion we can obtain a schema that is analogous

to (2), to within Oðn�1=2Þ in each item. Since the range of each coordinate xi
is bounded, we can assume the estimate of this error to be independent from

x. Since xk ¼ �ðx1 þ � � � þ xrÞ, we obtain

TlðxÞ ¼
Xr
i¼1

x2
i

1

pi
þ 1

prþ1
þO

1ffiffiffi
n

p
� �� �

þ 2
X
i<j

xixj
1

prþ1
þO

1ffiffiffi
n

p
� �� �

:

It remains to note that

W�1
ij ¼ p�1

i þ p�1
rþ1 when i ¼ j;

p�1
rþ1 when i0 j:

�
We will extract just one of the coordinates from equations defining the sets

Bl and B1. Without compromising generality we will further assume that x1 is

such a coordinate.

Definition 1. Let us name the section of Bl maximum section with respect

to x1 (maximum with respect to direction e) if the result of an orthogonal

projection of this section to the plane x1 ¼ const (to a plane that is orthogonal

to the vector e) seen as an ðr� 1Þ-dimensional set is congruent to the projection

of the whole set to the same plane.

In what follows we denote the projection of the set Bl to the plane

xl ¼ const (in ðr� 1Þ-dimensional space) by Bl
l . From the definition of the

maximum section of Bl we can conclude that the projection of this section to
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the same plane is congruent to Bl
l . We will also make use of directional

derivatives of some function f ðxÞ with respect to some vector e. These will be

denoted by qf ðxÞ=qe.

Lemma 4. Let S ¼ fx jTðxÞ ¼ cg be a smooth ðn� 1Þ-dimensional man-

ifold in Rn and e is a certain direction. Then the maximum section with respect

to e can be obtained from the necessary constraint

qTðxÞ
qe

¼ 0:

If the necessary constraint holds, the su‰cient condition for the existence of (not

necessarily single) maximum section would be the simultaneous fulfilment of the

constraints below at any given point P on the section’s boundary.

(1) TðxÞ ¼ c,

(2) q2TðxÞ=qe2 > 0,

(3) minimum of TðxÞ on the line x ¼ Pþ et is global with respect to t.

Proof. Necessity. From Definition 1 it follows that the maximum

section is defined by the points on the intersection of the projected set with

the family of projecting lines, which are aligned with a directing vector e. To

obtain the boundary of the maximum section Q it is necessary to extract those

lines of the family that intersect the set only in boundary points. Knowing

that each such line has the form x ¼ x0 þ et we can set the task in terms of the

minimization of TlðxÞ on the line.

It is known that the directional derivative at a point P can be calculated as

per the formula

qTðxÞ
qe

¼ qTðxðtÞÞ
qt

����
t¼0

where xðtÞ is any parameterized space curve that is expressed in the following

form in the vicinity of a point P ¼ xð0Þ

xðtÞ ¼ xð0Þ þ etþ oðtÞ:

Obviously, for any point on the surface S there exists a corresponding projective

line. Since as stipulated above such a line will intersect the set only on its

boundary, in the vicinity of P on the line it holds that TðxÞd c. Therefore,

the function Tðxð0Þ þ etÞ reaches its minimum when t ¼ 0 (not necessarily strict

minimum). Hence,

0 ¼ dTðxðtÞÞ
dt

����
t¼0

¼
Xn
i¼1

qTðxðtÞÞ
qxi

� dxiðtÞ
dt

¼ qTðxÞ
qe

:
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Su‰ciency. The fulfillment of the first condition is obvious. The second

condition, together with the necessary one, becomes su‰cient for the existence

of a local minimum of the function Tðxð0Þ þ etÞ. Indeed, by direct calcu-

lations we get

d 2TðxðtÞÞ
dt2

����
t¼0

¼ q2TðxÞ
qe2

����
x¼xð0Þ

:

If, in addition to the aforesaid, at the point P the third condition holds, then

the corresponding projective line touches S not only in the infinitesimal vicinity

of P, but also globally, i.e. the point belongs to the maximum section.

Lemma 5. In the space Rr the set

TlðxÞ ¼ c ð10Þ

is an ðr� 1Þ-dimensional manifold (surface) of class Cy.

Proof. The idea of the proof is due to Zh. Assylbekov. The function

TlðxÞ is defined on the set:

Q ¼ fx : xj > �
ffiffiffi
n

p
pj; j ¼ 1; r; x1 þ � � � þ xr <

ffiffiffi
n

p
prþ1g; ð11Þ

which is infinitely increasing when n approaches infinity. Coupled with the

boundedness of Bl, we obtain that beginning with some fixed N the set (11)

fully incorporates the surface (10). Further, we know that the function TlðxÞ
is infinitely di¤erentiable as a superposition of infinitely di¤erentiable func-

tions. Let us show that the gradient of this function does not equal zero

everywhere on the surface (10). Assume there exists a point x0 on (10) such

that

grad½Tlðx0Þ� ¼ 0 ) qðTlÞ
qxj

ðx0Þ ¼ 0; j ¼ 1; r

,
x0
jffiffiffi
n

p
pj

¼ � x0
1 þ � � � þ x0

rffiffiffi
n

p
prþ1

; j ¼ 1; r:

We can rewrite the last r equations in the form:ffiffiffi
n

p
W�1x0 ¼ 0;

where W�1 is the inverse for the covariance matrix W. The inverse exists due

to Remark 5. Consequently, only the vector x0 ¼ ð0; . . . ; 0Þ0 can serve as a

solution. But, on the other hand, this point does not belong to the surface

since Tlðx0Þ ¼ Tlð0; . . . ; 0Þ ¼ 0 < c. Summarizing we have

grad½TlðxÞ�0 0

on the whole surface (10).
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Applying Theorem 4 to the map Tl we obtain the statement of the current

lemma.

Now let us define the maximum section of the set Bl in the direction of

the axis Ox1 from the condition qTl=qx1 ¼ 0. It determines a plane in an

r-dimensional space. We have for T1ðxÞ:

T1ðxÞ ¼
Xr
i¼1

x2
i

pi
þ ðx1 þ � � � þ xrÞ2

prþ1
;

qT1

qx1
¼ 2x1

p1
þ 2

prþ1
ðx1 þ � � � þ xrÞ ¼ 0:

Similarly for TlðxÞ:

TlðxÞ ¼
2n

lðlþ 1Þ �1þ
Xr
i¼1

pi 1þ xiffiffiffi
n

p
pi

� �lþ1

þ prþ1 1� x1 þ � � � þ xrffiffiffi
n

p
prþ1

� �lþ1
 !

;

qTlðxÞ
qx1

¼ 2
ffiffiffi
n

p

l
1þ x1ffiffiffi

n
p

p1

� �l
� 1� x1 þ � � � þ xrffiffiffi

n
p

prþ1

� �l !
¼ 0;

from whence we obtain a condition

1þ x1ffiffiffi
n

p
p1

� �l
¼ 1� x1 þ � � � þ xrffiffiffi

n
p

prþ1

� �l
;

which, accounting for the non-negativeness of the expressions in the power

base, gives

x1

p1
þ x1 þ � � � þ xr

prþ1
¼ 0; ð12Þ

i.e. the same plane as in the case of the chi-squared statistic.

Remark 9. When l ¼ 0 or �1, this plane is obtained via proceeding to the

limit with regard to l.

Since q2TðxÞ=qx2
1 > 0 holds everywhere, from Lemma 4 at the intersection

of plane (12) with the manifold qBl we have a single maximum section. We

now find the intersection of this plane with the prelimiting and limiting

sets. For B1 we get

x1 ¼ � p1

p1 þ prþ1
ðx2 þ � � � þ xrÞ;

1

p1 þ prþ1
ðx2 þ � � � þ xrÞ2 þ

Xr
i¼2

x2
i

pi
¼ c:
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For the set Bl the projection of the maximum section to the plane x1 ¼ 0,

in accordance with the aforesaid, can be expressed in the form

clðlþ 1Þ
2n

¼ �1þ
Xr
i¼2

pi 1þ xiffiffiffi
n

p
pi

� �lþ1

þ p1 1� x2 þ � � � þ xrffiffiffi
n

p
ðp1 þ prþ1Þ

� �lþ1

þ prþ1 1�
x2 þ � � � þ xr � p1

p1þprþ1
ðx2 þ � � � þ xrÞffiffiffi

n
p

prþ1

 !lþ1

:

Interestingly, we could express the fourth item in the right-hand side of the last

equality in the same form as the third, and then add the two. We thus obtain

the following for the prelimiting set:

clðlþ 1Þ
2n

¼ �1þ
Xr
i¼2

pi 1þ xiffiffiffi
n

p
pi

� �lþ1

þ ðp1 þ prþ1Þ 1� x2 þ � � � þ xrffiffiffi
n

p
ðp1 þ prþ1Þ

� �lþ1

ð13Þ

It luminously holds that

Corollary 2. The equation (13) can be expressed in the form Tlðx 0Þ ¼ c,

where x 0 ¼ ðx2; . . . ; xrÞ, p 0
2 ¼ p2; . . . p

0
r ¼ pr, p 0

rþ1 ¼ p1 þ prþ1. The correspond-

ing limiting equation will obviously be T1ðx2; . . . ; xrÞ ¼ c, with the same set of

probabilities as above.

This corollary means that the projection of the maximum section of the set

Bl to the ðr� 1Þ-dimensional space of variables is the same set Bl, but which

has a di¤erent set of probabilities and independent variables, as well as is one

point ‘‘less dimensional’’.

Now we introduce a complementary notation

~BB1
1 :

1

p1 þ prþ1
ðx2 þ � � � þ xrÞ2 þ

Xr
i¼2

x2
i

pi
< c� affiffiffi

n
p ;

where a is a constant. Analogously, we define ~BB1
l , ld 2.

Lemma 6.

V ~BB1
1
¼ VB1

1
� aðr� 1Þ

2c
ffiffiffi
n

p VB1
1
þO

1

n

� �

Proof. Obviously, the mapping yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðc� a=

ffiffiffi
n

p
Þ

p
xi, i ¼ 2; r, converts

the set ~BB1
1 into the following set
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Xr
i¼2

y2i
pi

þ ðy2 þ � � � þ yrÞ2

p1 þ prþ1
< c:

And for Jacobian J of the map we get

J ¼ 1� affiffiffi
n

p
c

� �ðr�1Þ=2
¼ 1� aðr� 1Þ

2
ffiffiffi
n

p
c

þO
1

n

� �
:

Now what the lemma states follows from the representation of volume as an

integral with regard to variables ðx2; . . . ; xrÞ and the rule of the change of

variables in an integral.

Lemma 7.

VBl
1
¼ VB1

1
½1þOðn�1Þ�

Proof. In [8] it is shown that

VBl ¼ VB1 �
�
1þ c

24ðk þ 1Þn ððl� 1Þ2½5S � 3k2 � 6k þ 4�

� 3ðl� 1Þðl� 2Þ½S � 2k þ 1�Þ
�
þOðn�3=2Þ with S ¼

Xk
j¼1

p�1
j :

Then Lemma follows from Corollary 2.

Lemma 8. There exists such a constant a ¼ aðl; p; cÞ, that beginning with

some n0

~BB1
1 HBl

1 and V Bl
1n ~BB1

1


 �
¼ aðr� 1Þ

2
ffiffiffi
n

p
c

� VB1
1
þO

1

n

� �

Proof. We choose the constant a in the way that the set ~BB1
1 is a subset of

Bl
1 . Let ðx2; . . . ; xrÞ belong to ~BB1

1 , and p 0 ¼ ðp2; p3; . . . ; pr; p1 þ prþ1Þ. Then

T
p 0

1 ðx2; . . . ; xrÞ < c� a=
ffiffiffi
n

p
; ð14Þ

where T
p 0

1 is the statistic T1 taken for the set of probabilities p 0 and variables

ðx2; . . . ; xrÞ. On the other hand,

T
p 0

l ðx2; . . . ; xrÞ ¼ T
p 0

1 ðx2; . . . ; xrÞ þ
Xk
i¼2

ðl� 1Þx3
i

3
ffiffiffi
n

p
ðp 0

i Þ
2
þOðn�1Þ:

Since all xi are uniformly bounded, substituting inequality (14) we get

T
p 0

l ðx2; . . . ; xrÞ < c for all ndNðl; p; cÞ
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So we can assert that ~BB1
1 HBl

1 . Then by Lemmas 6 and 7

V Bl
1n ~BB1

1


 �
¼ VBl

1
� V ~BB1

1
¼ aðr� 1Þ

2c
ffiffiffi
n

p VB1
1
þO

1

n

� �

Now let us estimate the number of lattice points in the di¤erence of these

sets (in the space of dimensionality r� 1).

NBl
1
n ~BB1

1
¼ nðr�1Þ=2 � ðVBl

1
� V ~BB1

1
Þ þ an ¼ Oðnðr�2Þ=2Þ þ oðnðr�2Þ=2Þ:

The last relation is proven in the following lemma

Lemma 9.

an ¼ oðnðr�2Þ=2Þ

Proof. For r ¼ 3 the estimate of the error an follows from Huxley’s

theorem, and for greater r it follows from Hlawka’s theorem. Indeed, the

applicability of these theorems to ~BB1 is obvious, and for Bl it follows

(1) from [11] (when r ¼ 3), and

an ¼ Oðn23=73Þ ¼ oð
ffiffiffi
n

p
Þ;

(2) from Lemma 22 proven in the second part of the present paper (for

any r > 3), and

an ¼ Oðnðr�2Þ=2�1=2þ1=rÞ:

In view of the aforesaid, we obtain a summary lemma

Lemma 10.

NB l
1
n ~BB1

1
¼ Oðnðr�2Þ=2Þ ð15Þ

2.3. The transformation of the initial J2 representation into a simplified form.

We will prove theorem 3, if we express J2 in the form (9). Consider one item

of the embracing sum with respect to l in representation (4).

n�ðr�lþ1Þ=2
X

xlþ1 ALlþ1
. . .
X

xr ALr

�
ð
. . .

ð
wBl

l
ðxÞ½S1ð

ffiffiffi
n

p
xl þ nplÞfðxÞ�ylðx

�Þ
llðx�Þdx1; . . . ; dxl�1

� �
ð16Þ

Having expanded the indicator function into a sum of indicator functions

wBl
l
V ~BB1

l
þ wB l

l
n ~BB1

l
, we will split it into two parts. Three cases are possible for the

part that comprises the indicator over the di¤erence of sets.
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(1) l ¼ 1. The expression (16) consists only of the following sums:

n�r=2
X
x2 AL2

. . .
X
xr ALr

wBl
1
n ~BB1

1
ðxÞ½S1ð

ffiffiffi
n

p
x1 þ np1ÞfðxÞ�y1ðx

�Þ
l1ðx �Þ

It has the order Oð1=nÞ because the number of lattice points in the

di¤erence Bl
1n ~BB1

1 , according to lemma 10, has the order Oðnðr�2Þ=2Þ.
(2) l ¼ r. The integration is carried out over the set Bl

r n ~BB1
r with the

Lebesgue measure Oðn�1=2Þ, which, together with the coe‰cient

n�ðr�lþ1Þ=2, results in the final order of Oð1=nÞ.
(3) General case: l ¼ t, 1 < t < r. Here not only summation but also

integration has to be carried out. After the integration with respect

to variables x1; . . . ; xt follows the summation of the value Oð1Þ over

the lattice with respect to coordinates xtþ1; . . . ; xr. In this sum-

mation only those points of the lattice are taken that belong to

Bl
x1;...;xt

n ~BB1
x1;...;xt

. Due to the property of self-similarity (see Lemma

2), we can sequentially fix the coordinates x1; . . . ; xt and prove that

the two obtained sets have the same structure as their predecessors.

Consequently, in line with lemma 10 the number of points of a

corresponding lattice of dimension r� t in the di¤erence set equals

Oðnðr�t�1Þ=2Þ. Providing for the coe‰cient before the item we obtain

a part in J2 of the order Oð1=nÞ.
Let us now address to the other item. In order to deal with the expression

½S1ð
ffiffiffi
n

p
xl þ nplÞfðxÞ�ylðx

�Þ
llðx �Þ ð17Þ

we need the following theorem.

Theorem 5. Expression (17) will take the form

d½S1ð
ffiffiffi
n

p
ylðx�Þ þ nplÞ � S1ð

ffiffiffi
n

p
llðx�Þ þ nplÞ� þOðn�1=2Þ:

Proof. We write

½S1ð
ffiffiffi
n

p
xl þ nplÞfðxÞ�ylðx

�Þ
llðx �Þ ¼ d½S1ð

ffiffiffi
n

p
ylðx�Þ þ nplÞ � S1ð

ffiffiffi
n

p
llðx�Þ þ nplÞ�

þ S1ð
ffiffiffi
n

p
ylðx�Þ þ nplÞðfðylðx�Þ; x�Þ � fðyðx�Þ; x�ÞÞ

� S1ð
ffiffiffi
n

p
llðx�Þ þ nplÞðfðllðx�Þ; x�Þ

� fðlðx�Þ; x�ÞÞ; ð18Þ

where yðx�Þ and lðx�Þ are analogues of ylðx�Þ and llðx�Þ for B1. At that

d ¼ fðyðx�Þ; x�Þ ¼ fðlðx�Þ; x�Þ.
Now we prove that two last terms in (18) have order Oðn�1=2Þ.
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By Lipschitz property of the exponential function we get

jfðylðx�Þ; x�Þ � fðyðx�Þ; x�Þj

¼ 1

ð2pÞr=2jWj1=2
� je�ð1=2ÞðW�1x;xÞj

x¼ðyl ðx �Þ; x �Þ
T � e

�ð1=2ÞðW�1x;xÞj
x¼ðyðx �Þ; x �ÞT j

cLjðW�1x; xÞjx¼ðylðx�Þ;x �ÞT � ðW�1x; xÞjx¼ðyðx �Þ;x �ÞT j ¼ Oðn�1=2Þ:

We get the last expression from the fact that coordinates are uniformly bounded

in n according Lemma 2. We use as well as the equalities of Lemma 3:

ðW�1x; xÞjðyðx �Þ;x �Þ ¼ c; ðW�1ðn; xÞx; xÞjðylðx �Þ;x �Þ ¼ c;

W�1
ij ðn; xÞ �W�1

ij ¼ Oðn�1=2Þ:

To do this it is su‰cient to substitute ðW�1ðn; xÞx; xÞjx¼ðylðx �Þ;x �ÞT instead of

ðW�1x; xÞjx¼ðyðx �Þ;x �ÞT and subtract correspondent items of the two quadratic

forms.

Applying the same arguments we get

jfðllðx�Þ; x�Þ � fðlðx�Þ; x�Þj ¼ Oðn�1=2Þ:

If we summate the error obtained through the theorem over the lattice

points in the set Bl
l V ~BB1

l (integrate in the appropriate case) and multiply by a

corresponding coe‰cient, we will obtain Oðn�1Þ in the aggregate representation

for J2.

Now it can be seen that the principal part of J2 is a sum-integral of the

form

n�ðr�lþ1Þ=2
X

xlþ1 ALlþ1
. . .
X

xr ALr

�
ð
. . .

ð
wB l

l
V w ~BB1

l
ðxÞ½d � S1ð

ffiffiffi
n

p
xl þ nplÞ�ylðx

�Þ
llðx �Þdx1; . . . ; dxl�1

� �

Rewriting it as a di¤erence through the use of indicators wBl
l
and wBl

l
n ~BB1

l
and

attributing the sum-integral over the di¤erence of sets to the error, we have

n�ðr�lþ1Þ=2
X

xlþ1 ALlþ1
. . .
X

xr ALr

�
ð
. . .

ð
wB l

l
ðxÞ½d � S1ð

ffiffiffi
n

p
xl þ nplÞ�ylðx

�Þ
llðx �Þdx1; . . . ; dxl�1

� �
þOðn�1Þ

Finally, we apply the reasoning on p. 1571–1572, [1] for the chi-squared

statistic to the principal part of the last expression and obtain the item J2 in the

form
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J2 ¼ ðN l � nr=2V lÞe�c=2
.

ð2pnÞr
Yk

j¼1
pj

� 	1=2
þOðn�1Þ: ð19Þ

Thus, we obtain the simplified version of J2. End of the first part.

3. Applicability of Hlawka’s theorem to the sequence of sets BlðnÞ

On the next step we aim at the estimation of N l � nr=2V l, taken from

(19). To do this we investigate geometric properties of the set Bl.

3.1. Convexity of Bl.

Lemma 11. Let a function f ðxÞ be defined and have two derivatives on a

convex set Q. Then the function is strictly convex on Q if the second di¤erential

d 2f of this function at all points Q is a positively defined quadratic form.

Proof. See [6], Ch. 14, § 7, Lemma 2.

Lemma 12. The function TlðxÞ defined by formula (2) is strictly convex on

the set

Q ¼ fx : xj > �
ffiffiffi
n

p
pj; j ¼ 1; r; x1 þ � � � þ xr <

ffiffiffi
n

p
prþ1g:

Proof. The idea of the proof is due to Zh. Assylbekov. The set Q is

convex since it is an open r-dimensional pyramid. We compute second-order

partial derivatives of the function TlðxÞ:

q2ðTlÞ
qx2

i

¼ 2

pi
1þ xiffiffiffi

n
p

pi

� �l�1

þ 2

prþ1
1� x1 þ � � � þ xrffiffiffi

n
p

prþ1

� �l�1

; i ¼ 1; r; ð20Þ

q2ðTlÞ
qxiqxj

¼ 2

prþ1
1� x1 þ � � � þ xrffiffiffi

n
p

prþ1

� �l�1

; i0 j: ð21Þ

All the above-mentioned derivatives are continuous on Q, that’s why the

function TlðxÞ is two times di¤erentiable on Q. Due to Lemma 11 the

statement of the current lemma will be proven if we show that d 2ðTlÞ is a

positively defined quadratic form. To do this it is su‰cient to prove that

leading principal minors Dl , l ¼ 1; r of the matrix A ¼ ðq2ðTlÞ=qxiqxjÞ are

positive and use Sylvester’s criterion. We then make use of induction with

respect to l:

(1) l ¼ 1.

D1 ¼
q2ðTlÞ
qx2

1

> 0

due to (20) and (11).
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(2) Let Dl�1 > 0. We denote

ai ¼
2

pi
1þ xiffiffiffi

n
p

pi

� �l�1

; i ¼ 1; r;

b ¼ 2

prþ1
1� x1 þ � � � þ xrffiffiffi

n
p

prþ1

� �l�1

:

Observe that ai > 0, b > 0 due to (11). It follows from (20), (21) and

properties of the determinants that

Dl ¼

a1 þ b b � � � b

b a2 þ b � � � b

..

. ..
. . .

. ..
.

0 0 � � � al

����������

����������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Al

þ

a1 þ b b � � � b

b a2 þ b � � � b

..

. ..
. . .

. ..
.

b b � � � b

����������

����������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bl

: ð22Þ

Conducting the decomposition of the determinant Al with respect to

the last row, we obtain:

Al ¼ Dl�1al > 0 ð23Þ

due to the induction assumption. Subtracting from the first ðl � 1Þ
rows the lth row, we obtain in the determinant Bl :

Bl ¼ a1a2 . . . al�1b > 0: ð24Þ

From (22), (23), and (24) we get Dl > 0:

Lemma 13. The set Bl is strictly convex.

Proof. See the proof of Lemma 5 in [11].

3.2. Su‰cient conditions for the applicability of Hlawka’s theorem. Recall

that N l is the number of lattice points in L that fall into the set Bl. Since the

lattice L has a step equal to n�1=2, we can regard N l as the number of integer

points in the set derived from the set Bl by a linear extension with the factorffiffiffi
n

p
. Thus, in terms of Theorem 1 we can consider the linear factor M ¼

ffiffiffi
n

p
.

For a start we will show that the condition on the canonical mapping can

be excluded from those conditions of Theorem 1 that require our consider-

ation. The mapping is from Rr to Rr, and it maps each vector u on the unit

sphere to a vector xðuÞ A BlðnÞ such that the unit normal to the surface at this

point equals u. Obviously, the vector xðuÞ defined in such a way is equal to

the support vector of the set BlðcÞ in the direction u. We can assume that all

the set is parameterized by points of a unit sphere. At that the mapping
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inverse to the canonical mapping moves the radius-vector of any point on the

surface into the normal vector to the surface at this point.

Since BlðcÞ is a strictly convex set (Lemma 11), the canonical mapping is

one-to-one. Moreover, the set BlðcÞ is implicitly defined by a function of class

Cy and, consequently, can be regarded as a level surface. Hence, it is possible

to define a normal at a point on the surface via a normalized gradient of the

function T lðxÞ, which in accordance with the aforesaid does not equal zero and

is infinitely smooth. As a result the inverse and initial canonical mappings are

infinitely di¤erentiable in our case.

The following lemma states the requirements that should be satisfied in

order to get rid of the dependence on n in the result of Theorem 1.

Lemma 14. Assume that the conditions of Theorem 1 are satisfied for BðnÞ,
and, moreover,

(1) at every point of the boundary of the set its Gaussian curvature KnðuÞ is
located within limits that are independent from n, u and uniformly

separated from zero with regard to these parameters:

0 < K0 cKnðuÞcK1;

(2) for any u on the unit sphere the support function HnðuÞ of the set BðnÞ
is uniformly bounded with respect to n and uniformly separated from 0,

i.e.

H1 dHnðuÞdH0 > 0; juj ¼ 1:

(3) Partial derivatives of HnðuÞ of any order have a uniform upper bound

with respect to n.

Then

jN � nr=2V jc c � nr=2�1þ1=ðrþ1Þ; ð25Þ

where the constant c does not depend on n.

Proof. The proof almost verbatim reiterates the reasoning in the proof of

proposition 9 of [12]. However, we have to ensure that residual constants will

be bounded uniformly in n. To achieve it we consistently trace estimates in

Satz 1–9. Some short remarks on this process are given below.

Satz 1. Does not involve any residual terms.

Satz 2 (Hilfssatz 1). In the proof of Satz 2 Hlawka introduces additional

parametrization of the unit sphere Em by points of another unit sphere Em�1:

u1 ¼ cos v; uj ¼ sin v � ajð jd 2Þ;
Xm
j¼2

a2j ¼ 1; x ¼ xðvÞ:
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At that all the derivatives of functions uj with respect to v are bounded. In

place of functions f and g being used in Hilfssatz 1 the functions fnðvÞ ¼ x1ðvÞ,
gnðvÞ ¼ KnðvÞ � sinm�2 v � cos v, a ¼ 0, b ¼ p are taken. From estimates (14)–

(17) in Satz 2 and the reasoning that immediately follows we can conclude that

the estimates

f 00
n ðaÞc�r1 < 0; f 00

n ðbÞd r1 > 0;

min
½aþc1;b�c1�

j f 0
n ðxÞj ¼ C1 > 0; max

½a;b�
j f 000

n ðxÞj ¼ C2ðnÞcC2

are uniform in n. Let us go on to Hilfssatz 1. First, note the constant C

from Hillfsatz 1 can be regarded as uniformly bounded. Moreover, since

KnðuÞ is the sum of all m� 1-dimensional minors of the Hessian of the support

function HnðuÞ, this curvature, together with its derivatives of all orders, will be

uniformly bounded in n. Consequently, the same will hold for gnðvÞ. That’s

why Oðe�jÞ in (6), Hilfssatz 1 can be deemed independent from n. Tracing the

whole proof throughout Hilfssatz 1 makes sure that the order of errors is

nowhere dependent on n. Then we trace the order of errors in Satz 2 in the

same way.

Satz 3, Satz 4. All the errors can be regarded as independent from n

providing the requirements of the theorem are fulfilled.

Satz 5. In equality (3) constants C1 and C2 are uniformly bounded in n.

Satz 6–Satz 8. These sections prepare the ground for conclusions nar-

rated in Satz 9. We just continue to trace the order of errors.

Satz 9. Hlawka uses the results of previous sections of his paper. He

manipulates with the residuals, which as proven before are not dependent on n.

As a result we obtain inequalities (9), which are translated into the following

equality

Fðy; tÞ ¼ Vtm=2 þOðtmðm�1Þ=2ðmþ1ÞÞ; ð26Þ

where V is the m-dimensional volume of the set BðnÞ,
ffiffi
t

p
is the order of linear

expansion ðM ¼
ffiffiffi
n

p
Þ, y is the transition vector of the set with respect to the

origin, Fðy; tÞ—the number of integer points in the set obtained by the linear

expansion and the transition. Putting m ¼ r, t ¼ n we obtain the sought after

equality (25).

3.3. Fulfillment of su‰cient conditions for the sets BlðnÞ. We investigate the

fulfillment of Lemma-14 requirements for the sets BlðnÞ. First, we look at B1

as the limit of the above-mentioned sets and at the same time the simplest

member of the family BlðnÞ.
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Lemma 15. The Gaussian curvature of a unit sphere in a multidimensional

space equals one at each point of its surface.

Proof. It follows from straightforward calculations. See also [13].

Lemma 16. The Gaussian curvature of the set B1 is uniformly separated

from 0.

Proof. The proof is predicated on the fact that B1 is an image of the

orthogonal transformation (rotation) of an ellipsoid. For the Gaussian cur-

vature is not changed under orthogonal transformations of the surface, it is

su‰cient to prove that the curvature is uniformly separated from 0 for a

standard ellipsoid

x2
1

a21
þ x2

2

a22
þ � � � þ x2

r

a2r
¼ 1:

Note that such an ellipsoid can be obtained via a linear transformation of the

unit sphere. The transformation matrix

A ¼ diagða1; a2; . . . ; arÞ; y ¼ Ax; x A S1ð0Þ;

is obviously non-degenerate. Then we apply straightforward calculations.

Lemma 17. Assume that the manifold B has an unequivocal smooth para-

metrization in the spherical m-dimensional system of coordinates

x ¼ rðyÞ ¼ ðrðyÞ; y1; . . . ; ym�1Þ:

Then its first form can be written in the following way

I ¼

r2 þ q2r

qy2
1

qr
qy1

qr
qy2

� � � qr
qy1

qr
qym�1

qr
qy2

qr
qy1

r2 þ q2r

qy2
2

� � � qr
qy2

qr
qym�1

qr
qym�1

qr
qy1

qr
qym�1

qr
qy2

� � � r2 þ q2r

qy2
m�1

0
BBBBB@

1
CCCCCA ð27Þ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Proof. This lemma can be proven by calculating vectors qr=qyi in the

multidimensional spherical system of coordinates and then calculating their

pair-wise scalar products.

Lemma 18. The sets BlðnÞ have an unequivocal smooth parametrization in

the space Rr.

Proof. The proof is grounded on the implicit function theorem and the

fact that there exists a constant s independent from n such that the derivative of

Tl with respect to the polar radius fulfills the inequality
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qTlðxðyÞÞ
qr

d s

The inequality can be proved by expressing the statistic Tl in the spherical

coordinate system.

Denote the scalar radius-vector of Bl by rnðyÞ, and the radius-vector of B1

by rðyÞ.

Lemma 19. There exists a uniform (in y) convergence rnðyÞx rðyÞ and an

analogous uniform convergence for partial derivatives of any order.

Proof. Without loss of generality we discuss only the three-dimensional

case when r ¼ 2. In this case instead of the vector of parameters y we have

only one parameter to be named t. The proof for higher dimensions mirrors

the one below.

Let rnðtÞ be the polar radius of the set Bl, and rðtÞ be the polar radius of

the set B1. Then it can be proven that

jrnðtÞ � rðtÞjcCn�1=2 ð28Þ

Indeed, we have

TlðrnðtÞ; tÞ ¼ c ¼ T1ðrðtÞ; tÞ; Tlðr; tÞ ¼ T1ðr; tÞ þOðn�1=2Þ

At that the error in the second equality is uniform in n due to the limitedness of

the domain of coordinates. Hence, we can obtain a uniform estimate of the

form:

jT1ðrnðtÞ; tÞ � T1ðrðtÞ; tÞj ¼ jT1ðrnðtÞ; tÞ � TlðrnðtÞ; tÞjcCn�1=2:

On the other hand,

T1ðrnðtÞ; tÞ � T1ðrðtÞ; tÞ ¼ cos2 t
1

p1
þ 1

p3

� �
þ sin2 t

1

p2
þ 1

p3

� �
þ sin 2t

p3

� �

� ðr2nðtÞ � r2ðtÞÞ:

From the previous lemma we know that the first multiplier is uniformly

lower-bounded (let us denote this multiplier by E and the corresponding lower

bound by E0). We have

jrnðtÞ � rðtÞjc C=
ffiffiffi
n

p

EðrnðtÞ þ rðtÞÞ c
C=

ffiffiffi
n

p

E0 � rðtÞ
c

C 0ffiffiffi
n

p :

The last transition follows from the trivial non-negativeness of rnðtÞ and the

existence of a uniform lower bound for rðtÞ.
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We know that the derivatives of solutions rnðtÞ, rðtÞ are expressed in terms

of the derivatives of an implicit function with respect to its arguments t and

rðtÞ. At that in the denominator we will notice the first derivative with respect

to r of the functionals Tlðr; tÞ, T1ðr; tÞ to some power, for instance,

r 0nðtÞ ¼ � qTlðrnðtÞ; tÞ=qt
qTlðrnðtÞ; tÞ=qr

; r 0ðtÞ ¼ � qT1ðrðtÞ; tÞ=qt
qT1ðrðtÞ; tÞ=qr

From what was proven in the previous lemma

bN : EndN
qT1ðrðtÞ; tÞ

qr
d s > 0;

qTlðrnðtÞ; tÞ
qr

d s > 0:

In that very lemma it was virtually shown that

qTlðrðtÞ; tÞ
qr

¼ qT1ðrðtÞ; tÞ
qr

þO
1ffiffiffi
n

p
� �

:

Similarly, we can obtain the same for the derivatives with respect to t:

qTlðrðtÞ; tÞ
qt

¼ qT1ðrðtÞ; tÞ
qt

þO
1ffiffiffi
n

p
� �

:

So it can be easily seen that

qTlðrðtÞ; tÞ=qt
qTlðrðtÞ; tÞ=qr

¼ qT1ðrðtÞ; tÞ=qt
qT1ðrðtÞ; tÞ=qr

þO
1ffiffiffi
n

p
� �

:

Let us work out the di¤erence r 0ðtÞ � r 0nðtÞ:

qTlðrnðtÞ; tÞ=qt
qTlðrnðtÞ; tÞ=qr

� qT1ðrðtÞ; tÞ=qt
qT1ðrðtÞ; tÞ=qr

¼ qTlðrnðtÞ; tÞ=qt
qTlðrnðtÞ; tÞ=qr

� qTlðrðtÞ; tÞ=qt
qTlðrðtÞ; tÞ=qr

� �
þ qTlðrðtÞ; tÞ=qt

qTlðrðtÞ; tÞ=qr
� qT1ðrðtÞ; tÞ=qt
qT1ðrðtÞ; tÞ=qr

� �
Adding up the smoothness of the functions Tlðr; tÞ, T1ðr; tÞ with respect to the

combination of their arguments, the boundedness of the domain for ðr; tÞ, and
Lagrange’s theorem, we reach the inequality

jr 0nðtÞ � r 0ðtÞjcM � jrnðtÞ � rðtÞj þOðn�1=2Þ;

which entails the uniform convergence of the first derivatives of the polar

radius. We can prove the uniform convergence for higher-order derivatives in

absolutely the same way.

Corollary 3. There exists a uniform convergence in y of the Gaussian

curvature of Bl to the Gaussian curvature of B1.
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Proof. The statement follows from (27), formulae for first- and second-

form coe‰cients and the fact that a determinant is a sum of products of its

elements. The structure of the Gaussian curvature in terms of the spherical

system of coordinates preserves the uniform convergence originating from the

uniform convergence of corresponding radius-vectors.

Corollary 4. The Gaussian curvature of the sequence BlðnÞ is uniformly

bounded and uniformly separated from zero mirroring the behavior of the

Gaussian curvature of the limiting ellipsoid B1.

In what follows we utilize the Hausdor¤ metric that measures the distance

between two sets A and B. Recall the definition:

hausðA;BÞ ¼ r , AHBþ Srð0Þ;
BHAþ Srð0Þ:

�
Lemma 20. The support functions HnðcÞ of the manifolds BlðnÞ are

uniformly bounded and uniformly separated from 0 on a unit sphere jcj ¼ 1.

Proof. The proof consists of proving two substatements.

(1) The sequence BlðnÞ converges in the Hausdor¤ metric to the limiting

ellipsoid B1, and there exists a positive constant d such that

hausðBlðnÞ;B1Þc d=
ffiffiffi
n

p
.

(2) For the support function H of the manifold B1 it holds that

H1 dHðcÞdH0 > 0; jcj ¼ 1:

Providing these substatements are proven, we can take advantage of the

inequality widely known in optimal control theory

jHAðcÞ �HBðcÞjc jcj � hausðA;BÞ:

We will thereby obtain the uniform in n estimate for the di¤erence of the

support functions as needed.

The statement of point 2 becomes obvious if we take into account that the

ellipsoid B1 includes 0 as its inner point. In this case we are able to find a ball

Srð0Þ fully incorporated into B1. That is,

HðcÞdHSrð0ÞðcÞ ¼ rjcj ¼ r > 0

on a unit sphere. On the other hand, the upper estimate follows from the

boundedness of the ellipsoid, i.e. the possibility to insert it into a ball of some

fixed radius.

Let us prove point 1. Conducting the reasoning similar to the one in

lemma 8 we obtain that there exist such constants a1 and a2 independent from

n that the sets
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~BB1 :
ðx1 þ � � � þ xrÞ2

prþ1
þ
Xr
i¼1

x2
i

pi
< c� a1ffiffiffi

n
p ;

B̂B1 :
ðx1 þ � � � þ xrÞ2

prþ1
þ
Xr
i¼1

x2
i

pi
< cþ a2ffiffiffi

n
p

are in the following relationships with each other

~BB1 HBl H B̂B1:

On the other hand, there exist such d > 0 that

B̂B1 HB1 þ Sd=
ffiffi
n

p ð0Þ; B1 H ~BB1 þ Sd=
ffiffi
n

p ð0Þ: ð29Þ

Consider, for instance, the first of these relationships. In the sequel we use the

following matrix rule for sets: AB ¼ fy ¼ Ax j x A Bg. We have

B̂B1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=ðc

ffiffiffi
n

p
Þ

q
EB1 ¼ B1 þ a2

2c
ffiffiffi
n

p EB1 þOðn�1ÞEB1;

where E denotes the identity matrix. Since B1 is bounded, there exists such

b > 0 that

B̂B1 HB1 þ a2b

2c
ffiffiffi
n

p S1ð0Þ: ð30Þ

It remains to require the fulfillment of the inequality on d:

dffiffiffi
n

p d
a2b

2c
ffiffiffi
n

p :

Under this requirement the right part (30) will be embedded into the right part

of (29), which is what we strive to prove.

In summary for some constant d simultaneously

Bl H B̂B1 HB1 þ Sd=
ffiffi
n

p ð0Þ; B1 H ~BB1 HBl þ Sd=
ffiffi
n

p ð0Þ:

We have ascertained the first two requirements of Lemma 14. Now let us

check the requirement regarding partial derivatives of the support function

HnðcÞ.

Lemma 21. All partial derivatives of the function HnðcÞ are uniformly in n

upper bounded.

Proof. The uniform boundedness of first-order partial derivatives follows

from the boundedness of the set BlðcÞ and the equalities
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qHnðcÞ
qci

¼ xiðcÞ

where xiðcÞ is the i-th component of the image of the special mapping from a

unit sphere to BlðcÞ suggested above. The equalities hold due to general

convex body theory and are proven, for instance, in [13], p. 58.

Derivatives of second and higher orders of the function HnðcÞ can be

therefore considered derivatives of the components of the vector x. From

optimal control theory it is known that the vector xðcÞ represents a solution of

the following optimization problem: to find maximum of
Pr

i¼1 xici provided

that TlðxÞ ¼ c.

We use Lagrange’s method to seek conditional extrema with fixed c and

l. Everywhere in what follows we will assume that l0 0. For the case l ¼ 0

the reasoning is similar. We have

L ¼
Xr
i¼1

xici þ bðTl � cÞ;

qL

qxi
¼ ci þ b � qTl

qxi
¼ 0;

qL

qb
¼ Tl � c ¼ 0

Hence we obtain a system of rþ 1 non-linear equations with respect to the

dependent variables x1; . . . ; xr, b and independent variables c1; . . . ;cr.

F1ðx1; . . . ; xr; b;c1; . . . ;crÞ ¼ 0;

F2ðx1; . . . ; xr; b;c1; . . . ;crÞ ¼ 0;

. . .

Frðx1; . . . ; xr; b;c1; . . . ;crÞ ¼ 0;

Tlðx1; . . . ; xrÞ � c ¼ 0

8>>>>><
>>>>>:

ð31Þ

Herein

Fi ¼ 1þ xiffiffiffi
n

p
pi

� �l
� 1� x1 þ � � � þ xrffiffiffi

n
p

prþ1

� �l
þ cil

2b
ffiffiffi
n

p : ð32Þ

It is clearly seen that all functions of the system, together with all their partial

derivatives, are infinitely di¤erentiable on the set BlðcÞ. Without loss of

generality we consider partial derivatives of the dependent variables with

respect to c1. To obtain them we di¤erentiate all equations of the system

with respect to c1 and in what follows we will use these equations to simplify

the reasoning and summary results. Denoting
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a ¼ 1

prþ1
1� x1 þ x2 þ � � � þ xrffiffiffi

n
p

prþ1

� �l�1

; bi ¼
1

pi
1þ xiffiffiffi

n
p

pi

� �l�1

; i ¼ 1; r;

ci ¼ 1þ xiffiffiffi
n

p
pi

� �l
� 1� x1 þ x2 þ � � � þ xrffiffiffi

n
p

prþ1

� �l
; t ¼ 1

2b
; ð33Þ

taking into account

ci ¼ � cil

2
ffiffiffi
n

p
b
; i ¼ 1; r;

and cancelling the common multiplier �tl=
ffiffiffi
n

p
out of the last (di¤erentiated)

equation, we obtain a system of linear equations over

y ¼ qx1

qc1

;
qx2

qc1

; . . . ;
qxr

qc1

;
qt

qc1

� �T

of the following form

aþ b1 a � � � a c1

a aþ b2 � � � a c2

a a � � � aþ br cr

c1 c2 � � � cr 0

2
666664

3
777775

qx1=qc1

qx2=qc1

..

.

qxr=qc1

qt=qc1

2
66666664

3
77777775 ¼

�t

0

..

.

0

0

2
6666664

3
7777775: ð34Þ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Each component of a solution to this system is a quotient of the determinant of

the matrix that is derived by substituting the right column into columns of the

coe‰cient matrix and the coe‰cient matrix determinant (name them J 0 and

J respectively). Higher-order partial derivative components are obtained by

di¤erentiating the equations of system (34). Final formulae would be more

complex, but similar in structure to the simplest case of the ratio J 0=J.

Namely, we get a fraction with a polynomial over J, J 0 and their derivatives in

the numerator and with a power of J in the denominator.

The determinant of the coe‰cient matrix can be calculated by decom-

posing it into recurrent relationship

�Jð1; 2; . . . ; rÞ ¼ � b1Jð2; 3; . . . ; rÞ þ a
Yr
i¼2

bi
c2
1

a
þ
Xr
j¼2

ðc1 � cjÞ
2

bj

 ! !
;

JðrÞ ¼ aþ br �cr

cr 0

����
����

We get
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�Jð1; 2; . . . ; rÞ ¼
Xr
i¼1

c2
i

Y
k0i

bk þ a �
X

1cl<mcr

ðcl � cmÞ
2 �
Y
k0l
k0m

bk:

We know that

a ��!n!y 1

prþ1
; bi ��!n!y 1

pi
;

Xr
i¼1

c2
i ¼ 1: ð35Þ

Consequently, jJj is uniformly in n separated from 0.

The determinant J 0 can in turn be expressed in the form (the right part is

inserted into the j-th column):

J 0 ¼ ð�tÞð�1Þ1þj �

a aþ b2 a � � � a a c2

a a aþ b3 � � � a a c3

a a a � � � a aþ br cr

c1 � � � cj�1 cjþ1 � � � cr 0

������������

������������
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Note that due to (35) the determinant in the right part of the last equality is

uniformly bounded in n and c.

To finalize the proof of the uniform boundedness of the partial derivatives

we equate functions Fi from (32) to zero according to system (31):

t ¼ �
ffiffiffi
n

p
ci

lci

; Ei ¼ 1; r: ð36Þ

Further, we slice the compact set K :
Pr

i¼1 c
2
i ¼ 1 in the way described

below. Consider some infinitesimal e1 > 0 and the vicinity Uðe1;cÞ ¼
fc A K j jc1jc e1g. Put S1 ¼ UCðe1;cÞ. Within the set SC

1 ¼ Uðe1;cÞ we

consider another vicinity Uðe2;cÞ ¼ fc A K j jc2jc e2g and denote by S2 the

intersection SC
1 VUCðe2;cÞ. Continuing this process we can construct the sets

S1;S2; . . . ;Sr, the process being finite because at least one component of the

vector c is not close to zero. Since the union of all Si covers the unit sphere

K , it is su‰cient to validate the uniform boundedness of the partial derivatives

on each Si, and then unite the results.

Since on Si the inequality jcijd ei holds uniformly in n, we are able to

make use of the i-th equality in (36) and formula (33) in order to obtain

jJ 0jc
ffiffiffi
n

p
ci

lci

C1 c
C2

ei
:

From this and the inequality jJjdC3 > 0, proved above follows the statement

of the lemma.
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From what was proven above we can formulate the following summary

statement.

Lemma 22. All the conditions of Lemma 14 are fulfilled for the sequence of

sets BlðnÞ.

This is to wrap up the second part of the current paper. We now can go

on to proving the main result encapsulated in Theorem 2.

4. Summarizing the point

From Corollary 4 to Lemma 19 and Lemmas 20, 21 and 22 it follows

that we can apply Lemma 14 to the sets BlðnÞ. Substituting (25) into (19) we

obtain estimate (8).
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