О. Ю. Дашкова (Днепропетр. нац. ун-т)

О МОДУЛЯХ НАД ЦЕЛОЧИСЛЕННЫМИ ГРУППОВЫМИ КОЛЬЦАМИ ЛОКАЛЬНО РАЗРЕШИМЫХ ГРУПП С РАНГОВЫМИ ОГРАНИЧЕНИЯМИ НА ПОДГРУППЫ

We study the $\mathbb{Z}G$ -module A such that \mathbb{Z} is the ring of integers, the group G has infinite section p-rank (or infinite 0-rank), $C_G(A)=1$, A is not a minimax \mathbb{Z} -module, and, for every proper subgroup H of infinite section p-rank (or infinite 0-rank, respectively), the quotient module $A/C_A(H)$ is a minimax \mathbb{Z} -module. It is proved that if the group G under consideration is locally solvable, then G is a solvable group. Some properties of a solvable group of this type are obtained.

Досліджується $\mathbb{Z}G$ -модуль A такий, що $\mathbb{Z}-$ кільце цілих чисел, група G має нескінченний секційний p-ранг (або нескінченний 0-ранг), $C_G(A)=1$, A не ϵ мінімаксним \mathbb{Z} -модулем та для кожної власної підгрупи H нескінченного секційного p-рангу (або нескінченного 0-рангу відповідно) фактор-модуль $A/C_A(H)$ ϵ мінімаксним \mathbb{Z} -модулем. Доведено, що якщо група G локально розв'язна, то група G розв'язна. Отримано деякі властивості розв'язної групи цього типу.

1. Введение. Пусть A — векторное пространство над полем F. Подгруппы группы GL(F,A) всех автоморфизмов пространства A называются линейными группами. Если A имеет конечную размерность над полем F, GL(F, A) можно рассматривать как группу невырожденных $(n \times n)$ -матриц, где $n = \dim_F A$. Конечномерные линейные группы играют важную роль в различных областях науки и изучены достаточно полно. В случае, когда пространство А имеет бесконечную размерность над полем F, ситуация кардинально меняется. Бесконечномерные линейные группы исследовались мало. Изучение этого класса групп требует дополнительных ограничений. Одним из таких ограничений является финитарность линейной группы. Группа G называется финитарной, если для каждого ее элемента g подпространство $C_A(g)$ имеет конечную коразмерность в A (см., например [1, 2]). В [3] было введено понятие центральной размерности бесконечномерной линейной группы. Пусть H — подгруппа группы GL(F,A). H действует на факторпространстве $A/C_A(H)$ естественным образом. Авторы определяют centdim $_FH$ как $\dim_F(A/C_A(H))$. Говорят, что подгруппа H имеет конечную центральную размерность, если $\operatorname{centdim}_F H$ конечна, и H имеет бесконечную центральную размерность, если $\operatorname{centdim}_F H$ бесконечна.

В [4] изучались линейные группы бесконечной центральной размерности и бесконечного ранга, у которых каждая собственная подгруппа бесконечного ранга имеет конечную центральную размерность, для различных рангов группы.

Напомним, что группа G имеет конечный 0-ранг $r_0(G) = r$, если G обладает конечным субнормальным рядом с r бесконечными циклическими факторами, все остальные факторы которого периодические. 0-ранг группы не зависит от выбора ряда и является числовым инвариантом.

Пусть теперь p — простое число. Говорят, что группа G имеет конечный секционный p-ранг $r_p(G)=r$, если каждая элементарная абелева p-секция группы G имеет порядок, не превышающий p^r , и существует элементарная абелева p-секция U/V такая, что $|U/V|=p^r$. Мы будем говорить о секционном p-ранге, подразумевая, что p=0, или p — простое число, делая необходимые оговорки, если это необходимо. В дальнейшем для удобства изложения секционный p-ранг группы будем называть p-рангом группы.

В работе также используются понятия абелева секционного ранга группы и специального ранга группы. Группа G имеет конечный абелев секционный ранг, если каждая абелева секция группы G имеет конечный p-ранг для всех $p \geq 0$. Бэр и Хайнекен доказали, что для разрешимых (и даже гиперабелевых) групп конечность абелева секционного ранга эквивалентна конечности абелева подгруппового ранга (группа G имеет конечный абелев подгрупповой ранг, если все абелевы подгруппы группы G имеют конечный p-ранг для всех $p \geq 0$) [5]. Группа G имеет конечный специальный ранг r(G) = r, если r является наименьшим числом с тем свойством, что каждая конечнопорожденная подгруппа группы G может быть порождена не более чем r элементами. Это определение было введено G0. И. Мальцевым [6]. Специальный ранг группы иногда называют рангом Прюфера – Мальцева.

Если $G \leq GL(F,A)$, то A можно рассматривать как FG-модуль. Естественным обобщением этого случая является рассмотрение RG-модуля A, где R — кольцо, структура которого близка к структуре поля. При этом обобщением понятия центральной размерности подгруппы линейной группы является понятие коцентрализатора подгруппы, введенное в [7]. Пусть A-RG-модуль, где R — кольцо, G — группа. Если $H \leq G$, то фактор-модуль $A/C_A(H)$, рассматриваемый как R-модуль, называется коцентрализатором подгруппы H в модуле A.

Отметим, что до настоящего времени исследование алгебраических систем, удовлетворяющих условиям минимальности и максимальности, остается актуальным. Примерами таких систем являются классы нетеровых и артиновых модулей. Напомним, что модуль называется артиновым, если упорядоченное множество его подмодулей удовлетворяет условию минимальности. Модуль называется нетеровым, если упорядоченное множество его подмодулей удовлетворяет условию максимальности. Естественным обобщением классов артиновых и нетеровых модулей является класс минимаксных модулей (см. гл. 7 [8]). R-модуль A называется минимаксным, если он имеет конечный ряд подмодулей, каждый фактор которого является либо нетеровым R-модулем, либо артиновым R-модулем.

В [9] исследовался RG-модуль A такой, что R — дедекиндова область, коцентрализатор группы G в модуле A не является артиновым R-модулем, $C_G(A)=1$, G — локально разрешимая группа бесконечного ранга и коцентрализатор каждой собственной подгруппы H в модуле A, имеющей бесконечный ранг, является артиновым R-модулем. Было установлено, что локально разрешимая группа G, удовлетворяющая заданным условиям, разрешима, и описана структура группы G. В [10] рассматривалась аналогичная проблема для условия нетеровости. Изучался RG-модуль A такой, что R — коммутативное нетерово кольцо, коцентрализатор группы G в модуле G не является нетеровым G-модулем, G не является нетеровым G-модулем, G не является нетеровым G-модулем. В этом случае также было установлено, что локально разрешимая группа G, удовлетворяющая заданным условиям, разрешима, и описана ее структура. Рассматривались случаи различных рангов группы G-ранга группы, G-ранга группы, абелева секционного и специального рангов группы.

В настоящей работе рассматривается обобщение двух данных проблем. Изучается RG-модуль A такой, что $R=\mathbb{Z}$ — кольцо целых чисел, коцентрализатор группы G в модуле A не является минимаксным \mathbb{Z} -модулем, $C_G(A)=1,\ G$ — локаль-

но разрешимая группа бесконечного ранга и коцентрализатор каждой собственной подгруппы H в модуле A, имеющей бесконечный ранг, является минимаксным \mathbb{Z} -модулем. Доказана разрешимость рассматриваемой группы G (теоремы 4.2-4.4) и описана ее структура для различных рангов группы (теоремы 3.1-3.3). Как и в работах [9, 10], обобщаются результаты о бесконечномерных линейных группах [4] на случай модулей с коммутативным кольцом скаляров.

- **2. Предварительные результаты.** Сформулируем элементарные результаты, которые будут использоваться при доказательстве основных теорем.
- В леммах 2.1, 2.2, 2.6, 2.7, 4.2, 4.3, 4.4 и теоремах 3.1–3.3, 4.2–4.4 рассматривается $\mathbb{Z} G$ -модуль A такой, что $C_G(A)=1$ и коцентрализатор группы G в модуле A не является минимаксным \mathbb{Z} -модулем.
- **Лемма 2.1.** Пусть $A \mathbb{Z}G$ -модуль и ранг $r_p(G)$ бесконечен для некоторого $p \geq 0$. Предположим, что для каждой собственной подгруппы M такой, что $r_p(M)$ бесконечен, коцентрализатор подгруппы M в A минимаксный \mathbb{Z} -модуль. Тогда имеют место следующие утверждения:
- (i) Если U, V собственные подгруппы группы G и $G = \langle U, V \rangle$, то по крайней мере одна из подгрупп U или V имеет конечный p-ранг.
- (ii) Если H собственная подгруппа G, такая, что ранг $r_p(H)$ бесконечен, то коцентрализатор любой подгруппы H и коцентрализатор любой собственной подгруппы группы G, содержащей H, являются минимаксными \mathbb{Z} -модулями.
- (iii) Пусть K, L- собственные подгруппы группы G, содержащие подгруппу H такую, что ранг $r_p(H)$ бесконечен. Тогда $\langle K,L\rangle-$ собственная подгруппа группы G.
- **Лемма 2.2.** Пусть $A-\mathbb{Z} G$ -модуль, ранг $r_p(G)$ бесконечен для некоторого $p\geq 0$. Предположим, что для каждой собственной подгруппы M такой, что ранг $r_p(M)$ бесконечен, коцентрализатор M в модуле A минимаксный \mathbb{Z} -модуль. Если K собственная нормальная подгруппа группы G такая, что ранг $r_p(K)$ бесконечен и фактор-группа G/K конечно порождена, то G/K циклическая q-группа для некоторого простого числа q.

Доказательство. Предположим, что $G=\langle K,S\rangle$ для некоторого конечного множества S с тем свойством, что если T — собственное подмножество множества S, то $G\neq\langle K,T\rangle$. Пусть S состоит из элементов x_1,x_2,\ldots,x_n . Если n>1, то $\langle K,x_1,x_2,\ldots,x_{n-1}\rangle$ и $\langle K,x_n\rangle$ являются собственными подгруппами группы G, что противоречит лемме 2.1. Отсюда следует, что фактор-группа G/K циклическая. В случаях, когда фактор-группа G/K бесконечна либо G/K конечна, но $|\pi(G/K)|>1$, группа G является произведением двух собственных подгрупп G_1 и G_2 таких, что ранги $r_p(G_1)$ и $r_p(G_2)$ бесконечны. Пришли к противоречию с леммой 2.1. Следовательно, фактор-группа G/K — циклическая g-группа для некоторого простого числа g.

Лемма доказана.

- **Лемма 2.3** [4]. Пусть G группа и q простое число. Предположим, что A бесконечная нормальная элементарная абелева q-подгруппа группы G такая, что фактор-группа G/A конечна. Тогда G порождается двумя подгруппами, имеющими бесконечный q-ранг.
- **Лемма 2.4** [4]. Пусть G группа, q простое число и A нормальная делимая абелева q-подгруппа группы G такая, что фактор-группа G/A конечна. Если A

имеет бесконечный q-ранг, то G порождается двумя собственными подгруппами, имеющими бесконечный q-ранг.

Лемма 2.5 [4]. Пусть G — группа, A — нормальная абелева подгруппа группы G такая, что G/A — бесконечная периодическая почти абелева фактор-группа. Если $|\pi(G/A)| > 1$, то группа G является произведением двух собственных подгрупп, содержащих A.

Лемма 2.6. Пусть $A - \mathbb{Z}G$ -модуль, ранг $r_p(G)$ бесконечен для некоторого $p \geq 0$. Предположим, что для каждой собственной подгруппы M такой, что ранг $r_p(M)$ бесконечен, коцентрализатор подгруппы M в A является минимаксным \mathbb{Z} -модулем. Если K — нормальная подгруппа H, $H \leq G$, фактор-группа H/K почти абелева и ранг $r_p(H/K)$ бесконечен, то коцентрализатор подгруппы H в A является минимаксным \mathbb{Z} -модулем.

Доказательство. Предположим сначала, что p=0. Пусть L- нормальная подгруппа группы H такая, что фактор-группа H/L конечна, а L/K абелева. Если $r_0(L/K)$ бесконечен, то фактор-группа L/K содержит свободную абелеву подгруппу B/K такую, что ранг $r_0(B/K)$ бесконечен и фактор-группа L/B периодическая. Поскольку фактор-группа H/L конечна, подгруппа B имеет конечное число сопряженных подгрупп в H. Обозначим эти подгруппы как B_1, \ldots, B_m . Если $C=\mathrm{core}_H B$, то существует вложение фактор-группы L/C в прямое произведение $L/B_1 \times L/B_2 \times \ldots \times L/B_m$. Отсюда следует, что фактор-группа L/C периодическая, и, поскольку $r_0(C/K)$ бесконечен, $r_0(C)$ также бесконечен. Отметим также, что фактор-группа C/K является свободной абелевой. Если фактор-группа H/C конечна либо $\pi(H/C)=1$, то выберем простое число $q \notin \pi(H/C)$ и положим $D/K=(C/K)^q$. Если фактор-группа H/C бесконечна и $|\pi(H/C)|>1$, положим D=C. Тогда в каждом из этих случаев H/D бесконечна и $|\pi(H/D)|>1$, причем $r_0(D)$ бесконечен. Применяя леммы 2.5 и 2.1 к подгруппе H, видим, что коцентрализатор подгруппы H в модуле A является минимаксным \mathbb{Z} -модулем.

Предположим теперь, что p > 0 и L — подгруппа, определенная выше. Выберем свободную абелеву подгруппу B/K фактор-группы L/K такую, что факторгруппа L/B является периодической. Если ранг $r_0(B/K)$ бесконечен, проводим те же рассуждения, что и в случае при p=0. Поэтому полагаем, что $r_0(B/K)$ конечен. Как и ранее, если $C = \operatorname{core}_H B$, то фактор-группа L/C периодическая, и $r_n(L/C)$ бесконечен. Рассматривая, если это необходимо, фактор-группу группы L/C по ее силовской p'-подгруппе, получаем, что L/C является p-группой. Если фактор-группа L/L^pC бесконечна, то H/L^pC удовлетворяет условиям леммы 2.3, и поэтому H является произведением двух своих собственных подгрупп, имеющих бесконечный p-ранг. Таким образом, в этом случае коцентрализатор подгруппы H в A является минимаксным \mathbb{Z} -модулем. Если фактор-группа L/L^pC конечна, то для нее имеет место равенство $L/C = E/C \times D/C$ для некоторой конечной подгруппы E/C и делимой подгруппы D/C. Поскольку фактор-группа H/L конечна, а L/C абелева, то фактор-группа $F/C = (E/C)^{H/C}$ также конечна. Более того, L/Fявляется делимой абелевой р-группой бесконечного р-ранга, и, применяя лемму 2.4 к фактор-группе H/F, получаем, что H является произведением двух своих собственных подгрупп, каждая из которых имеет бесконечный p-ранг, и, следовательно, коцентрализатор подгруппы H в A является минимаксным \mathbb{Z} -модулем.

Лемма доказана.

Лемма 2.7. Пусть $A - \mathbb{Z}G$ -модуль, ранг $r_p(G)$ бесконечен для некоторого $p \geq 0$. Предположим, что для каждой собственной подгруппы M такой, что $r_p(M)$ бесконечен, коцентрализатор подгруппы M в A является минимаксным \mathbb{Z} -модулем. Если H — нормальная подгруппа группы G и фактор-группа G/H почти абелева, то G/H изоморфна подгруппе $C_{a^{\infty}}$ для некоторого простого числа G.

Доказательство. Достаточно рассмотреть случай, когда $G \neq H$. Если $r_p(G/H)$ бесконечен, то коцентрализатор группы G в A является минимаксным \mathbb{Z} -модулем по лемме 2.6. Таким образом, $r_p(G/H)$ конечен, и поэтому ранг $r_p(H)$ бесконечен. Более того, если фактор-группа G/H конечна, справедливость данного утверждения следует из леммы 2.2. Таким образом, полагаем, что фактор-группа G/H бесконечна.

Предположим сначала, что фактор-группа G/H абелева. Согласно лемме 2.1 (iii) G/H не является свободной абелевой группой. Обозначим через B/H свободную абелеву подгруппу группы G/H такую, что фактор-группа G/B периодическая. Поскольку ранг $r_p(H)$ бесконечен, ранг $r_p(B)$ также бесконечен. Если $|\pi(G/B)| > 1$, то группа G является произведением двух своих собственных подгрупп, имеющих бесконечный р-ранг, что противоречит лемме 2.1 (ііі). Таким образом, фактор-группа G/B является q-группой для некоторого простого числа q. Пусть фактор-группа B/H нетривиальна и r — простое число, отличное от q. Положим $C/H = (B/H)^r \neq B/H$. Отсюда следует, что фактор-группа G/C является периодической и $\pi(G/C)$ состоит из двух различных простых чисел q и r. Как и ранее, приходим к противоречию. Следовательно, фактор-группа G/H является периодической q-группой. Если G/H делимая, то она разлагается в прямое произведение квазициклических q-групп, и, согласно лемме 2.1 (iii), $G/H \simeq C_{q^{\infty}}.$ В противном случае фактор-группа $(G/H)/(G/H)^q$ является нетривиальной элементарной абелевой q-группой, и по лемме 2.1 (iii) получаем $|(G/H)/(G/H)^q| = q$. Отсюда следует, что $G/H = (E/H) \times (D/H)$, где D/H — делимая подгруппа, |E/H| = q, и по лемме 2.1 (iii) вновь получаем противоречие.

Перейдем теперь к рассмотрению общего случая. Пусть L/H — нормальная абелева подгруппа фактор-группы G/H такая, что фактор-группа G/L конечна. Пусть U/H — произвольная подгруппа конечного индекса в группе G/H. Если $V/H = \mathrm{core}_{G/H}U/H$, то G/V конечна, причем ранг $r_p(V)$ бесконечен. Согласно лемме 2.2 фактор-группа G/V является циклической q-группой для некоторого простого числа q, и поэтому $G' \leq V \leq U$. Таким образом, если W/H — пересечение всех подгрупп конечного индекса фактор-группы L/H, то G/W абелева, W имеет бесконечный p-ранг, а фактор-группа G/W финитно аппроксимируема и поэтому конечна. Таким образом, G=WK для некоторой подгруппы K, содержащей H, причем фактор-группа K/H конечно порождена. Поскольку G/H бесконечна, из леммы 2.2 следует, что $G \neq K$. Отсюда по лемме 2.1 (iii) получаем G=W, и тогда фактор-группа G/H абелева, и справедливость результата следует из первой части доказательства.

Лемма доказана.

3. Модули над целочисленными групповыми кольцами разрешимых групп. Опишем структуру разрешимой группы, удовлетворяющей рассматриваемым условиям.

Теорема 3.1. Пусть $A-\mathbb{Z} G$ -модуль, G- разрешимая группа и ранг $r_p(G)$ бесконечен для некоторого $p\geq 0$. Предположим, что для каждой собственной подгруппы M такой, что $r_p(M)$ бесконечен, коцентрализатор подгруппы M в A является минимаксным \mathbb{Z} -модулем. Тогда G содержит нормальную нильпотентную подгруппу H такую, что ранг $r_p(H)$ бесконечен, и $G/H\simeq C_{q^\infty}$ для некоторого простого числа q.

Доказательство. Если $G=D_0\geq D_1\geq\ldots\geq D_{n-1}\geq D_n=E$ — производный ряд группы G, то существует натуральное число m такое, что фактор-группа G/D_m конечна, а фактор-группа D_m/D_{m+1} бесконечна. Пусть $K=D_m$. По лемме $2.7~G/K'\simeq C_{q^\infty}$ для некоторого простого числа q. Поскольку ранг $r_p(K')$ бесконечен, коцентрализатор подгруппы K' в A является минимаксным \mathbb{Z} -модулем. Пусть $C=C_A(K')$. Тогда A/C — минимаксный \mathbb{Z} -модуль. Поскольку $K'\leq C_G(C)$ и коцентрализатор G в A не является минимаксным \mathbb{Z} -модулем, $G/C_G(C)\simeq C_{q^\infty}$. Так как K' — нормальная подгруппа группы G, C — $\mathbb{Z}G$ -подмодуль модуля A. Поскольку фактор-модуль A/C — минимаксный \mathbb{Z} -модуль, A имеет конечный ряд $\mathbb{Z}G$ -подмодулей

$$0 = C_0 \le C = C_1 \le C_2 \le \ldots \le C_t = A$$

такой, что каждый фактор $C_j/C_{j-1},\ j=2,\ldots,t$, является либо конечным $\mathbb{Z}G$ -модулем, либо квазиконечным $\mathbb{Z}G$ -модулем, либо $\mathbb{Z}G$ -модулем, аддитивная группа которого – абелева группа без кручения конечного 0-ранга. Отсюда следует, что можно построить ряд подмодулей $0=C_0\leq C=C_1\leq C_2\leq\ldots\leq C_l=A$ такой, что $l\geq t$ и каждый фактор $C_j/C_{j-1},\ j=2,\ldots,l$, является либо конечным $\mathbb{Z}G$ -модулем, либо квазиконечным $\mathbb{Z}G$ -модулем, либо G-рационально неприводимым $\mathbb{Z}G$ -модулем, аддитивная группа которого – абелева группа без кручения конечного 0-ранга. В случаях, когда фактор $C_j/C_{j-1},\ j=2,\ldots,l$, является либо конечным $\mathbb{Z}G$ -модулем, по лемме 16.19 [11] фактор-группа $G/C_G(C_j/C_{j-1})$ почти абелева. В случае, когда фактор $C_j/C_{j-1}G$ -рационально неприводим и его аддитивная группа является абелевой группой без кручения конечного 0-ранга, фактор-группу $G/C_G(C_j/C_{j-1})$ можно рассматривать как неприводимую подгруппу $GL_r(\mathbb{Q})$. По теореме А. И. Мальцева (лемма 3.5 [12]) $G/C_G(C_j/C_{j-1})$ почти абелева.

Положим $H=C_G(C_1)\cap C_G(C_2/C_1)\cap C_G(C_3/C_2)\cap\ldots\cap C_G(C_l/C_{l-1})$. Подгруппа H действует тривиально в каждом факторе ряда $0=C_0\leq C=C_1\leq C_2\leq\ldots\leq C_l=A$. Следовательно, H нильпотентна. По теореме Ремака G/H вкладывается в прямое произведение фактор-групп $G/C_G(C_j/C_{j-1}),\ j=1,2,\ldots,l$, поэтому фактор-группа G/H почти абелева. По лемме 2.7 фактор-группа G/H изоморфна подгруппе $C_q\infty$ для некоторого простого числа q. Так как $H\leq C_G(C_1)$, и $G/C_G(C)\simeq C_{q^\infty}$, отсюда следует, что $G/H\simeq C_{q^\infty}$, и ранг $r_p(H)$ бесконечен.

Теорема доказана.

Теорема 3.2. Пусть $A - \mathbb{Z}G$ -модуль, G - pазрешимая группа бесконечного абелева секционного ранга. Предположим, что коцентрализатор каждой собственной подгруппы бесконечного абелева секционного ранга в A является минимаксным \mathbb{Z} -модулем. Тогда G содержит нормальную нильпотентную подгруппу H такую, что ранг $r_p(H)$ бесконечен, и $G/H \simeq C_{q^\infty}$ для некоторого простого числа q.

Доказательство. Поскольку группа G разрешима и имеет бесконечный абелев секционный ранг, существует простое число p такое, что ранг $r_p(G)$ бесконечен.

Для этого простого числа в случае, когда H — собственная подгруппа и ранг $r_p(H)$ бесконечен, подгруппа H имеет бесконечный абелев секционный ранг. Поэтому коцентрализатор подгруппы H в A является минимаксным \mathbb{Z} -модулем. Теперь можно применить теорему 3.1.

Теорема доказана.

Теорема 3.3. Пусть $A - \mathbb{Z}G$ -модуль, G -разрешимая группа бесконечного специального ранга. Предположим, что коцентрализатор каждой собственной подгруппы бесконечного специального ранга в A является минимаксным \mathbb{Z} -модулем. Тогда G содержит нормальную нильпотентную подгруппу H такую, что ранг $r_p(H)$ бесконечен, и $G/H \simeq C_{q^\infty}$ для некоторого простого числа q.

Доказательство. Если G имеет бесконечный абелев секционный ранг и X — собственная подгруппа бесконечного абелева секционного ранга, то коцентрализатор подгруппы X в модуле A является минимаксным \mathbb{Z} -модулем. Справедливость доказываемой теоремы следует из теоремы 3.2. Следовательно, можно считать, что группа G имеет конечный абелев секционный ранг.

Пусть U — нормальная подгруппа группы G такая, что G/U — бесконечная почти абелева фактор-группа, и предположим, что V/U — нормальная абелева подгруппа G/U, для которой фактор-группа G/V конечна. Поскольку ранг $r_0(G)$ конечен, фактор-группа V/U содержит конечнопорожденную подгруппу B/U такую, что V/B периодическая. Если $C/U = (B/U)^{G/U}$, то C/U также конечно порождена. Предположим, что G/U имеет бесконечный специальный ранг. Поскольку группа G имеет конечный абелев секционный ранг, отсюда следует, что p-подгруппы фактор-группы V/C черниковские для каждого простого числа p. Таким образом, $\pi(V/C)$ бесконечно. Если D/C — силовская $\pi(G/V)$ -подгруппа V/C, то фактор-группа V/D имеет бесконечный специальный ранг. С учетом леммы 1.D.4 [13] получаем G/D = (V/D)(W/D), где V/D — нормальная подгруппа G/D, $(V/D)\cap (W/D)=E$, W/D- конечная подгруппа и $\pi(V/D)\cap \pi(W/D)$ пусто. Тогда V/D является произведением двух G-инвариантных подгрупп бесконечного специального ранга. Следовательно, G/D представима в виде произведения двух собственных подгрупп бесконечного специального ранга. Поэтому коцентрализатор группы G в A является минимаксным \mathbb{Z} -модулем. Пришли к противоречию. Следовательно, специальный ранг фактор-группы G/U конечен, и поэтому U имеет бесконечный специальный ранг. Как и при доказательстве леммы 2.7, показываем, что $G/U \simeq C_{q^\infty}$ для некоторого простого числа q. Как и в теореме 3.1, G удовлетворяет требованиям доказываемой теоремы.

Теорема доказана.

4. Модули над целочисленными групповыми кольцами локально разрешимых групп. Докажем разрешимость локально разрешимой группы, удовлетворяющей рассматриваемым условиям.

Лемма 4.1. Пусть $A - \mathbb{Z}G$ -модуль, G - локально разрешимая группа. Предположим, что коцентрализатор группы G в модуле A является минимаксным \mathbb{Z} -модулем и $C_G(A) = 1$. Тогда группа G разрешима.

Доказательство. Пусть $C = C_A(G)$. Как и при доказательстве теоремы 3.1, устанавливаем, что A имеет конечный ряд $\mathbb{Z}G$ -подмодулей

$$0 = C_0 \le C = C_1 \le C_2 \le \ldots \le C_l = A$$

такой, что каждый фактор C_j/C_{j-1} , $j=2,\ldots,l$, является либо конечным $\mathbb{Z}G$ -модулем, либо G-рационально неприводимым $\mathbb{Z}G$ -модулем, аддитивная группа которого — абелева группа без кручения конечного 0-ранга. В случаях, когда фактор C_j/C_{j-1} , $j=2,\ldots,l$, является либо конечным $\mathbb{Z}G$ -модулем, либо квазиконечным $\mathbb{Z}G$ -модулем, по лемме 16.19 [11] фактор-группа $G/C_G(C_j/C_{j-1})$ почти абелева. В случае, когда фактор C_j/C_{j-1} G-рационально неприводим и его аддитивная группа является абелевой группой без кручения конечного 0-ранга, фактор-группу $G/C_G(C_j/C_{j-1})$ можно рассматривать как неприводимую подгруппу $GL_r(\mathbb{Q})$. По теореме А. И. Мальцева (лемма 3.5 [12]) $G/C_G(C_j/C_{j-1})$ почти абелева. Из выбора подгруппы C_1 следует, что фактор-группа $G/C_G(C_1)$ тривиальна.

Пусть

$$H = C_G(C_1) \cap C_G(C_2/C_1) \cap C_G(C_3/C_2) \cap \ldots \cap C_G(C_l/C_{l-1}).$$

Подгруппа H действует тривиально в каждом факторе ряда $0=C_0\leq C=C_1\leq \leq C_2\leq \ldots \leq C_l=A$. Следовательно, подгруппа H нильпотентна. По теореме Ремака

$$G/H \le G/C_G(C_1) \times G/C_G(C_2/C_1) \times G/C_G(C_3/C_2) \times \dots \times G/C_G(C_l/C_{l-1}).$$

Отсюда следует, что фактор-группа G/H почти абелева, и поэтому группа G разрешима.

Лемма доказана.

Лемма 4.2. Пусть $A-\mathbb{Z}G$ -модуль, группа G локально разрешима и ранг $r_p(G)$ бесконечен для некоторого $p\geq 0$. Предположим, что для каждой собственной подгруппы M такой, что $r_p(M)$ бесконечен, коцентрализатор подгруппы M в A — минимаксный \mathbb{Z} -модуль. Если группа G не является разрешимой, то она совершенна.

Доказательство. Отметим, что если H — собственная подгруппа группы G конечного индекса, то ранг $r_p(H)$ бесконечен, и поэтому коцентрализатор подгруппы H в модуле A — минимаксный \mathbb{Z} -модуль. Согласно лемме 4.1, подгруппа H разрешима. По лемме 2.2 фактор-группа G/H абелева. Следовательно, группа G разрешима. Пришли к противоречию. Пусть $G \neq G'$. Тогда фактор-группа G/G' является делимой. Отсюда следует, что G содержит нормальную подгруппу H такую, что $G/H \simeq C_{q^\infty}$ для некоторого простого числа G. Тогда ранг G0 бесконечен. Следовательно, коцентрализатор подгруппы G1 в модуле G2 является минимаксным G3-модулем. По лемме 4.1 подгруппа G4 разрешима. Тогда и группа G6 разрешима. Противоречие.

Лемма доказана.

Обозначим через d(G) ступень разрешимости группы G. При рассмотрении случая, когда p является простым числом, нам понадобится следующий результат.

Теорема 4.1 [4]. Пусть p- простое число, G- локально разрешимая группа конечного p-ранга, причем $r_p(G)=r$. Тогда фактор-группа G/T(G) разрешима, $d(G/T(G)) \leq s_p(r)$, и G/T(G) имеет конечный специальный ранг, не превышающий $f_p(r)$.

Лемма 4.3. Пусть $A - \mathbb{Z}G$ -модуль, группа G локально разрешима и ранг $r_p(G)$ бесконечен для некоторого $p \geq 0$. Предположим, что для каждой собственной

подгруппы M такой, что $r_p(M)$ бесконечен, коцентрализатор M в A является минимаксным \mathbb{Z} -модулем. Если группа G не является разрешимой, H — нормальная подгруппа группы G и ранг $r_p(H)$ конечен, то фактор H/T(H) G-централен.

Доказательство. Пусть $r_p(H)=r$. В случае, когда p=0, применим к подгруппе H лемму 2.12 [14], а при p>0 — теорему 4.1. В обоих случаях получаем, что фактор-группа H/T(H) разрешима и имеет конечный специальный ранг, являющийся функцией числа r. Положим $n=r_0(H/T(H))$, причем число n зависит только от r. Подгруппа H имеет ряд G-инвариантных подгрупп $T(H)=H_0 \le H_1 \le \ldots \le H_d=H$, каждый фактор которого абелев.

Отметим, что фактор-группа $H_1/T(H)$ — группа без кручения конечного специального ранга, не превышающего числа n, и поэтому $\operatorname{Aut}(H_1/T(H))$ изоморфна подгруппе группы $GL(n,\mathbb{Q})$. Следовательно, фактор-группа $G/C_G(H_1/T(H))$ локально разрешима и изоморфна некоторой подгруппе группы $GL(n,\mathbb{Q})$. Из следствия 3.8 [12] следует, что фактор-группа $G/C_G(H_1/T(H))$ разрешима, и тогда по лемме 4.2 она тривиальна. Таким образом, $[G,H_1] \leq T(H)$.

Применим метод математической индукции. Согласно индуктивному предположению, $[G,H_{d-1}]\leq T(H)$. Тогда $H_{d-1}/T(H)\leq Z(G/T(H))$, где Z(G/T(H)) — центр фактор-группы G/T(H). Поэтому фактор-группа H/T(H) нильпотентна и ее класс нильпотентности не превышает 2. Пусть K/T(H)=Z(H/T(H)). Как и ранее, устанавливаем, что, поскольку K/T(H) и H/K — абелевы группы без кручения конечного специального ранга, не превышающего числа n, то $[G,K]\leq T(H)$ и $[G,H]\leq K$. По лемме о трех подгруппах и лемме 4.2 получаем $[G,H]=[G,G,H]\leq T(H)$, и лемма доказывается индукцией по числу d.

Лемма 4.4. Пусть $A - \mathbb{Z}G$ -модуль, G — неразрешимая локально разрешимая группа и ранг $r_p(G)$ бесконечен для некоторого $p \geq 0$. Предположим, что для каждой собственной подгруппы M такой, что $r_p(M)$ бесконечен, коцентрализатор M в модуле A — минимаксный \mathbb{Z} -модуль. Тогда группа G содержит собственную нормальную подгруппу V такую, что если U — нормальная подгруппа группы G и

Лемма доказана.

нормальную подгруппу V такую, что если U – нормальная подгруппа группы G и $V \leq U \leq G, U \neq G,$ то U разрешима, и коцентрализатор подгруппы U в модуле A является минимаксным \mathbb{Z} -модулем.

Доказательство. Пусть $T=T(G),\,T\neq G,$ и ранг $r_p(T)$ конечен (если p=0, это условие автоматически выполняется). По лемме 4.2 фактор-группа G/T неразрешима и, согласно следствию 1 к теореме 5.27 [15], не является простой. Следовательно, группа G содержит собственную нормальную подгруппу $L\geq T,\,L\neq T.$ Если ранг $r_p(L)$ конечен, то по лемме 4.3 фактор L/T G-централен, и поэтому G/T содержит нетривиальную максимальную нормальную абелеву подгруппу V/T. Из выбора подгруппы V0 следует, что $V\neq G$ 1. Если V1 — нормальная подгруппа группы V1 и и

$$V \le U \le G, \qquad V \ne U, \qquad U \ne G,$$

то по лемме 4.3 ранг $r_p(U)$ бесконечен, следовательно, коцентрализатор подгруппы U в модуле A является минимаксным \mathbb{Z} -модулем. По лемме 4.1 подгруппа U разрешима. Если подгруппы L с заданными свойствами не существует, то полагаем V=T, и, как и ранее, подгруппа V имеет указанные свойства.

Теперь предположим, что p>0. Рассмотрим сначала случай, когда ранг $r_p(T)$ бесконечен. Если $T\neq G$, то коцентрализатор подгруппы T в модуле A является

минимаксным \mathbb{Z} -модулем, и тогда по лемме 4.1 подгруппа T разрешима. Следовательно, фактор-группа G/T неразрешима и, согласно следствию 1 к теореме 5.27 [15], она не является простой. Если U — нормальная подгруппа группы G и $T \leq U \leq G, \ U \neq G,$ то ранг $r_p(U)$ бесконечен, поэтому коцентрализатор подгруппы U в модуле A является минимаксным \mathbb{Z} -модулем. Лемма 4.1 влечет разрешимость подгруппы U. Таким образом, и в этом случае можно положить T=V.

Рассмотрим теперь случай, когда T=G. Предположим сначала, что все силовские p-подгруппы группы G имеют конечный p-ранг. Тогда по лемме 3.1 [13] группа G удовлетворяет условию минимальности для p-подгрупп. Пришли к противоречию, поскольку в этом случае p-подгруппы являются черниковскими и имеют конечные специальные ранги, ограниченные некоторой величиной. Таким образом, группа G содержит некоторую p-подгруппу P бесконечного специального ранга. Тогда по следствию 2 к теореме 6.36 [15] группа G содержит также бесконечную элементарную абелеву p-подгруппу A. Поскольку A — собственная подгруппа группы G, для любой собственной нормальной подгруппы G получаем G0. В противном случае фактор-группа G1 абелева, что противоречит лемме 4.2. Таким образом, G2 является собственной подгруппой группы G3, причем G4 в модуле G5 является минимаксным G5 в модулем. В этом случае подгруппы G6 в модуле G6 забраем G7 в модулем. В этом случае полагаем G6 в модуле G6 забраем G7 забраем G8 в модулем G8 в модулем G9 забраем G9 заб

Лемма доказана.

Теорема 4.2. Пусть $A - \mathbb{Z}G$ -модуль, G - локально разрешимая группа и ранг $r_p(G)$ бесконечен для некоторого $p \geq 0$. Предположим, что для каждой собственной подгруппы M такой, что $r_p(M)$ бесконечен, коцентрализатор подгруппы M в A - минимаксный \mathbb{Z} -модуль. Тогда группа G разрешима.

Доказательство. Предположим противное, т. е. группа G не является разрешимой. По лемме 4.4 группа G содержит нормальную подгруппу V с тем свойством, что если U — нормальная подгруппа группы G, для которой $V \le U \le G$, $U \ne G$, то подгруппа U разрешима, и коцентрализатор подгруппы U в A является минимаксным \mathbb{Z} -модулем. Положим $V = U_0$ и $d(U_0) = d_0$. Предположим, что мы построили нормальные разрешимые подгруппы

$$U_0 \le U_1 \le \ldots \le U_n$$

такие, что $d(U_i)=d_i$ для $i=0,1,\ldots,n$ и $d_i< d_{i+1}$ для $i=0,1,\ldots,n-1$. Поскольку группа G не является разрешимой, существует нормальная подгруппа U_{n+1} , включающая в себя U_n , такая, что $d(U_{n+1})=d_{n+1}>d(U_n)$. Поэтому мы получаем возрастающий ряд разрешимых нормальных подгрупп, ступени разрешимости которых возрастают. Положим $W=\bigcup_{n\geq 1}U_n$. По построению подгруппа W не является разрешимой и $V\leq W$. Отсюда следует, что W=G.

Положим теперь $C_n=C_A(U_n)$ для любого $n\in\mathbb{N}$. Так как U_n — нормальная подгруппа группы $G,\ C_n$ является $\mathbb{Z} G$ -подмодулем для каждого n, и поскольку коцентрализатор подгруппы U_n в A является минимаксным \mathbb{Z} -модулем, фактор-модуль A/C_n — минимаксный \mathbb{Z} -модуль. A/C_n можно рассматривать как $\mathbb{Z}(G/C_G(A/C_n))$ -модуль. Согласно лемме 4.1 фактор-группа $G/C_G(A/C_n)$ разре-

шима. Из леммы 4.2 следует, что $G=C_G(A/C_n)$ для каждого $n\in\mathbb{N}$. Поскольку $G=\bigcup_{n\geq 1}U_n,$ отсюда следует, что

$$C_A(G) = \bigcap_{n \ge 1} C_A(U_n) = \bigcap_{n \ge 1} C_n,$$

и тогда G тривиально действует в каждом факторе ряда $0 \le C_A(G) \le A$. Следовательно, группа G абелева. Противоречие. Теорема доказана.

Используя метод доказательства теоремы 3.1, а также применяя теорему 4.2, получаем следующий результат.

Теорема 4.3. Пусть $A - \mathbb{Z}G$ -модуль, G – локально разрешимая группа бесконечного абелева секционного ранга. Предположим, что коцентрализатор каждой собственной подгруппы бесконечного абелева секционного ранга в A — минимаксный \mathbb{Z} -модуль. Тогда группа G разрешима.

Теорема 4.4. Пусть $A - \mathbb{Z}G$ -модуль, G — локально разрешимая группа бесконечного специального ранга. Предположим, что коцентрализатор каждой собственной подгруппы бесконечного специального ранга в A — минимаксный \mathbb{Z} -модуль. Тогда группа G разрешима.

Доказательство. Пусть G — контрпример для данной теоремы. Если N собственная нормальная подгруппа бесконечного специального ранга, то коцентрализатор подгруппы N в модуле A является минимаксным \mathbb{Z} -модулем. Согласно лемме 4.1, подгруппа N разрешима. Если N имеет конечный специальный ранг, то по лемме 10.39 [15] подгруппа N гиперабелева. Обозначим через $\{N_{\alpha}\}$ семейство всех собственных нормальных продгрупп группы G. Тогда подгруппа $J=\prod N_{\alpha}$ также гиперабелева. Поскольку простая локально разрешимая группа циклическая, группа G также гиперабелева. Согласно теореме 7 [5], G содержит подгруппу K, которая либо является элементарной абелевой q-группой для некоторого простого числа q, имеющей бесконечный специальный ранг, либо абелевой группой без кручения бесконечного специального ранга. Пусть N- собственная нормальная подгруппа группы G, имеющая конечный специальный ранг. Согласно лемме 10.39 [15], существует натуральное число d такое, что подгруппа $N^{(d)}$ является прямым произведением черниковских p-групп для различных простых p. Если $N^{(d)}K \neq G$, то отсюда следует, что подгруппа N разрешима. Пусть $N^{(d)}K=G,\,r$ — некоторое простое число, отличное от q, X — силовская $\{q, r\}'$ -подгруппа $N^{(d)}$. Поскольку $XK \neq G$, проводя аналогичные рассуждения, получаем, что подгруппа X, а следовательно и N, разрешима. Таким образом, каждая собственная нормальная подгруппа группы G разрешима, и ее коцентрализатор в модуле A является минимаксным Z-модулем. Проводя рассуждения, аналогичные рассуждениям, примененным при доказательстве теоремы 4.2, убеждаемся в справедливости теоремы.

Теорема доказана.

Phillips R. E. The structure of groups of finitary transformations // J. Algebra. – 1988. – 119, № 2. – P. 400 – 448

Phillips R. E. Finitary linear groups: a survey. "Finite and locally finite groups"// NATO ASI. Ser. C. Math. Phys. Sci. – 1995. – 471. – P. 111 – 146.

^{3.} Dixon M. R., Evans M. J., Kurdachenko L. A. Linear groups with the minimal condition on subgroups of infinite central dimension // J. Algebra. – 2004. – 277, № 1. – P. 172–186.

Dashkova O. Yu., Dixon M. R., Kurdachenko L. A. Linear groups with rank restrictions on the subgroups of infinite central dimension // J. Pure and Appl. Algebra. – 2007. – 208, № 3. – P. 785 – 795.

- Baer R., Heineken H. Radical groups of finite abelian subgroup rank // Ill. J. Math. 1972. 16, № 4.
 P. 533 580.
- 6. Мальцев А. И. О группах конечного ранга // Мат. сб. 1948. 22, № 2. С. 351 352.
- Курдаченко Л. А. О группах с минимаксными классами сопряженных элементов // Бесконечные группы и примыкающие алгебраические структуры. – Киев, 1993. – С. 160 – 177.
- 8. Kurdachenko L. A., Subbotin I. Ya., Semko N. N. Insight into modules over Dedekind Domains. Kyiv: Inst. Math. Nat. Acad. Sci. Ukraine, 2008. 119 p.
- 9. Dashkova O. Yu. On modules over group rings of locally soluble groups with rank restrictions on some systems of subgroups // Asian-Eur. J. Math. − 2010. − 3, № 1. − P. 45 − 55.
- Дашкова О. Ю. Об одном классе модулей, близких к нетеровым // Фундам. и прикл. математика.
 2009. 15, № 7. С. 113 125.
- Kurdachenko L. A., Otal J., Subbotin I. Ya. Artinian modules over group rings. Basel etc.: Birkhäuser, 2007. – 248 p.
- 12. Wehrfritz B. A. F. Infinite linear groups // Ergeb. Math. und ihrer Grenzgebiete. 1973. 229 p.
- 13. Kegel O. H., Wehrfritz B. A. F. Locally finite groups. North-Holland; Amsterdam; London: North-Holland Math. Library, 1973. 210 p.
- 14. Franciosi S., De Giovanni F. The Shur property and groups with uniform conjugacy classes // J. Algebra. 1995. 174, № 3. P. 823 847.
- 15. Robinson D. J. R. Finiteness conditions and generalized soluble groups // Ergeb. Math. und ihrer Grenzgebiete. 1972. Vols. 1, 2. 464 p.

Получено 11.05.11