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Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive
target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first
WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter
detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del
Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor ð1.4� 0.2Þ ×
103 relative to atmospheric argon. We report a background-free null result from ð2616� 43Þ kg d of data,
accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the
90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in
the WIMP search regions, is 2.0 × 10−44 cm2 (8.6 × 10−44 cm2, 8.0 × 10−43 cm2) for a WIMP mass of
100 GeV=c2 (1 TeV=c2, 10 TeV=c2).

DOI: 10.1103/PhysRevD.93.081101

The existence of dark matter in the Universe is inferred
from abundant astrophysical and cosmological observations
[1–3]. TheDarkSide-50 experiment searches for darkmatter
in the form ofweakly interactingmassive particles (WIMPs)
[4], whose collisions with argon nuclei would produce
nuclear recoils (NRs) with tens of keVenergy. Liquid argon
(LAr) is a bright scintillator and allows for efficient drift and
extraction of the ionization electrons. Pulse shape discrimi-
nation (PSD) in LAr allows electron recoil (ER) events from
β-γ backgrounds to be rejected relative to the NR events
expected from WIMP scattering at the 1.5 × 107 level or
better [5,6]. However, atmospheric argon (AAr) contains
∼1 Bq=kg of cosmic-ray-produced 39Ar activity [7,8]. A
source of argon with reduced 39Ar activity is a crucial
requirement for developing experiments that will push
argon-based WIMP dark matter direct detection searches
to their highest possible sensitivity. This report presents the
first results fromadirect-detectionWIMPdarkmatter search
using a target of low-radioactivity argon (UAr), which was
extracted and purified in a multi-year effort [9–12].
The DarkSide-50 two-phase (liquid-gas) argon time

projection chamber (LAr TPC) is mounted at the center
of a liquid scintillator veto (LSV) described in Ref. [13].

The LSV is instrumented with 110 PMTs and filled with
30 t of boron-loaded liquid scintillator. Surrounding the
LSV is a 1 kt water Cerenkov veto (WCV) instrumented
with 80 PMTs. Signals from the LSVand WCVare used to
reject events in the LAr TPC caused by cosmic-ray muons
[14,15], cosmogenic (muon-induced) neutrons [16,17] or
radiogenic neutrons and γ rays from radioactive contami-
nation in the detector components.
The LAr TPC is fully described in Ref. [6]. A total of 38

3” PMTs, 19 positioned at the top and 19 at the bottom of a
ð46.4� 0.7Þ kg active target of UAr, detect primary scin-
tillation (S1) and gas scintillation from drifted ionization
electrons (S2) resulting from ionizing radiation inter-
actions. The TPC drift field is 200 V=cm and the extraction
field is 2.8 kV=cm. PSD of ER events is based on the single
parameter f90, the fraction of S1 light detected in the first
90 ns of the pulse. The S1 and S2 signals together enable
three-dimensional event localization. The transverse (x-y)
position is determined from the hit pattern of the S2 signal
on the top PMT array, while the vertical (z) position is
inferred from the drift time separating the S1 and S2
signals. The S1 response is corrected for z dependence, and
the S2 response is corrected for radial dependence, normal-
izing both to the respective centers of the detector.
Other spatial dependencies are not significant (S1 radial
dependence is <3%, S2 z dependence is consistent with
an electron drift lifetime >5 ms). The fully corrected
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zero-field TPC photoelectron yield with UAr at the 83mKr
peak energy is ð8.1� 0.2Þ PE=keV, 2% higher than that
quoted in Ref. [6], due to small changes in the baseline
finding and pulse identification algorithms.
Figure 1 compares the UAr and AAr data of the S1 pulse

integral spectrum. A z cut (residual mass of ∼34 kg) has
been applied to remove γ-ray events from the anode and
cathode windows. Events identified as multiple scatters or
coincident with a prompt signal in the LSV have also been
removed. To compare the ER background from UAr with
that from AAr, a GEANT4 [18,19] MC simulation of the
DarkSide-50 LAr TPC, LSV, and WCV detectors was
developed. The simulation accounts for material properties,
optics, and readout noise and also includes a model for LAr
scintillation and recombination. The MC is tuned to agree
with the high statistics 39Ar data taken with AAr [6]. A
simultaneous MC fit to the S1 spectrum taken with field off
(see Fig. 6 in Appendix A), S1 spectrum with field on, and
the z-position distribution of events, determines the 39Ar
and 85Kr activities in the UAr to be ð0.73� 0.11Þ mBq=kg
and ð2.05� 0.13Þ mBq=kg, respectively. The fitted 39Ar
and 85Kr activities are also shown in Fig. 1. The uncer-
tainties in the fitted activities are dominated by systematic
uncertainties from varying fit conditions. The 39Ar
activity of the UAr corresponds to a reduction by a factor
of ð1.4� 0.2Þ × 103 relative to AAr. This is significantly
beyond the upper limit of 150 established in [12].
An independent estimate of the 85Kr decay rate in UAr is

obtained by identifying β-γ coincidences from the 0.43%
decay branch to metastable 85mRb with mean lifetime
1.46 μs. This method gives a decay rate of 85Kr via
85mRb of ð33.1� 0.9Þ events=d in agreement with the
value ð35.3� 2.2Þ events=d obtained from the known
branching ratio and the spectral fit result. The presence

of 85Kr in UAr is unexpected. We have not attempted to
remove krypton from the UAr, although cryogenic distil-
lation would likely do this very effectively. The 85Kr in UAr
could come from atmospheric leaks or from natural fission
underground, which produces 85Kr in deep underground
water reservoirs at specific activities similar to those of
39Ar [20].
As in Ref. [6], we determine the nuclear recoil energy

scale from the S1 signal using the photoelectron yield of
NRs relative to 83mKr measured in the SCENE experiment
[21,22], and the zero-field photoelectron yield for 83mKr
measured in DarkSide-50. An in situ calibration with an
AmBe source was also performed, allowing a check of the
f90 medians obtained for NRs in DarkSide-50 with those
scaled from SCENE, as shown in Fig. 2. Contamination
from inelastic or coincident electromagnetic scattering
cannot easily be removed from AmBe calibrations, so
we still derive our NR acceptance from SCENE data where
available.
High-performance neutron vetoes are necessary to

exclude NR events due to radiogenic or cosmic-ray-
produced neutrons from the WIMP search. In the AAr
exposure [6], the vetoing efficiency of the LSV was limited
to 98.5� 0.5% by dead-time considerations given the
∼150 kBq of 14C in the scintillator, resulting from the
unintended use of trimethylborate (TMB). For the UAr
data set, the LSV contains a scintillator mixture of low-
radioactivity TMB from a different supplier at 5% con-
centration by mass. As a result, the 14C activity in the LSV
scintillator is now only ∼0.3 kBq.
Neutron capture on 10B in the scintillator occurs with a

22 μs lifetime through two channels [13,23]:

FIG. 1. Live-time normalized S1 pulse integral spectra from
single-scatter events in AAr (black) and UAr (blue) taken with
200 V=cm drift field. Also shown are the 85Kr (green) and 39Ar
(orange) levels as inferred from a MC fit. Note the peak in the
lowest bin of the UAr spectrum, which is due to 37Ar from
cosmic-ray activation. The peak at ∼600 PE is due to γ-ray
Compton backscatters.

FIG. 2. f90 NR median vs S1 from a high-rate in situ AmBe
calibration (blue) and scaled from SCENE measurements (red
points). Grey points indicate the upper NR band from the AmBe
calibration and lower ER band from β-γ backgrounds. Events in
the region between the NR and ER bands are due to inelastic
scattering of high-energy neutrons, accidentals, and correlated
neutron and γ-ray emission by the AmBe source.
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10Bþ n → αð1775 keVÞ þ 7Li ðBR∶ 6.4%Þ
10Bþ n → αð1471 keVÞ þ 7Li� ðBR∶ 93.6%Þ

7Li� → 7Liþ γð478 keVÞ:

The reduced radioactivity of the LSV scintillator allowed
us to operate with a veto window of 6 times the neutron
capture lifetime and a threshold low enough to veto on the
signal from the α and 7Li (g.s) capture channel. Using
AmBe calibration data, we measured that this signal is
quenched to 30� 5 PE, well above our analysis threshold
of 6 PE. The 478 keV γ ray accompanying the 7Li� channel
gives at least 240 PE and is easily detected. From AmBe
data and MC simulations, we estimate a detection effi-
ciency of> 99.1% [13] for radiogenic neutrons when using
the neutron capture signals only. This estimate is a lower
limit since the calculation neglects the neutron thermal-
ization signal from the scintillator. The main detection
inefficiency is due to the fraction of the neutron captures on
1H in which the 2.2 MeV deexcitation γ ray is fully
absorbed in inert materials rather than in the scintillator.
The data for the WIMP search were acquired using a

simple majority trigger requiring a threshold number of
channels in the LAr TPC to present hits within a 100 ns
window. The trigger efficiency is essentially 100% forNRs in
our WIMP search region. We perform a nonblind physics
analysis,where theLArTPCevent selection anddata analysis
procedures are intentionally kept as similar as possible to
thoseused in theAArexposure [6].After data quality cuts,we
obtain 70.9 live days of WIMP search data with the UAr.
Events are further required to have only one valid and

unsaturated S1, one valid S2 pulse with position-corrected
value greater than 100 PE, and up to one “S3” pulse, due to
S2-induced photoionization of the cathode. A pulse is
identified as S3 if the time difference between S2 and the
pulse matches the maximum drift time. Additionally, we
remove events in which the S1 light is abnormally concen-
trated in a single PMT, which could be due to an afterpulse or
to a Cherenkov interaction in a PMTwindow piled up with a
normal S1 pulse. Themuch lower 39Ar rate inUAr revealed a
higher fraction of spurious events, leading us to adjust the cut
to reject 5% of events rather than 1% as in the AAr run.
The remaining events are subject to being vetoed as

neutron-associated. Events are vetoed if the LSV detected a
prompt signal near the LAr TPC trigger time or if the LSV
detected a delayed signal above 3 PE within 200 μs after a
TPC interaction (delayed neutron captures). Events with
LSVactivity preceding the LAr TPC signal by up to ∼8 μs
are also vetoed to account for possible delayed neutron
events in the TPC. Finally, all LAr TPC events are rejected
for 2 s after a TPC trigger in coincidence with any large-
amplitude muonlike event in the WCVor LSV to eliminate
delayed neutrons possibly produced by the muon.
With the same z cuts in the TPC as in Ref. [6], a fiducial

mass of ð36.9� 0.6Þ kg remains. No x-y cut is applied

because the PSD, z cut and veto cuts are more than adequate
to remove the γ-ray background strongly concentrated at the
boundaries of the sensitive volume. Surface backgrounds
from α emitters of the natural radioactive decay chains have
been identified and studied, but none of these survive the
standard cuts to give background in theWIMP search region
at the present background and exposure levels.
The combined acceptance of all TPC and veto cuts to

retain single-scatter NR events is shown as a function of S1
in Fig. 3. The acceptance is > 70% and approximately
independent of S1 above 20 PE, with the major loss being
due to the dead time from the delayed neutron capture veto
cut. The distribution of the 1.26 × 105 events in the f90 vs
S1 plane which remain after all cuts is shown in Fig. 4.
As was done for the AAr exposure, the WIMP search

region is defined as a region in the f90 vs S1 plane
having known high acceptance for NRs and low expected
leakage of single-scatter ER events, with an energy region of
interest of 20 PE to 460 PE in S1 (13 keVnr to 201 keVnr).
NR acceptance curves are established using the median f90
values for NRs measured in the SCENE experiment [21,22],
inserted into a statistical model for the f90 distribution, as
described in Refs. [5,6,24]. Above 57 keVnr, where SCENE
data are unavailable, the NR f90 medians are taken from
DarkSide-50 AmBe calibration data (see Fig. 2).
The expected single-scatter ER leakage is calculated

from the same statistical model for the ER f90 distribution
as described in Ref. [6], fitted to the high statistics 39Ar data
from the AAr exposure, and scaled to the number of events
in the UAr data sample. The WIMP search region is then
defined by intersecting the 90% NR acceptance line
with the curve corresponding to a leakage of less than
0.01 events=ð5-PE binÞ from the single-scatter ER back-
ground into the WIMP search region. This procedure
predicts a total of less than 0.1 leakage events. As can
be seen in Fig. 4, there are in fact no events in the WIMP
search region in the present UAr exposure.

FIG. 3. Combined acceptance of all TPC and veto cuts (red),
acceptance of the f90 NR cut (green) and the final cumulative NR
acceptance in UAr data (black).
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We can compare the observed number of “neutron
events”—events within the WIMP search region that pass
the TPC cuts and are accompanied by veto signals—with
our MC prediction. We do not observe any neutron events
in the present exposure. In the previous AAr exposure of
47.1 live days [6] we observed two. One of the AAr neutron
events was classified as cosmogenic based on its WCVand
LSV signals. Combining the two exposures, we observe
one radiogenic neutron event in 118 live days of data,
which is in agreement with our MC prediction of (2� 2)
events before the veto cuts. MC simulations for the UAr
exposure predict that <0.02 radiogenic neutrons would
produce events in the TPC and remain un-vetoed. The
unvetoed cosmogenic neutron background is expected to be
small compared to the radiogenic neutron background [17].
Dark matter limits from the present exposure are

determined from our WIMP search region using the
standard isothermal galactic WIMP halo parameters
(vescape ¼ 544 km=s, v0 ¼ 220 km=s, vEarth ¼ 232 km=s,
ρdm ¼ 0.3 GeV=ðc2cm3Þ; see [6] and references cited
therein). Given the background-free result shown above,
we derive a 90% C.L. exclusion curve corresponding to the
observation of 2.3 events for spin-independent interactions.
The null result of the UAr exposure sets the upper limit on
the WIMP-nucleon spin-independent cross section of
3.1 × 10−44 cm2 (1.4 × 10−43 cm2, 1.3 × 10−42 cm2) for
a WIMP mass of 100 GeV=c2 (1 TeV=c2, 10 TeV=c2).
When combined [25] with the null result of our previous
AAr exposure, we obtain an upper limit of 2.0 × 10−44 cm2

(8.6 × 10−44 cm2, 8.0 × 10−43 cm2) for a WIMP mass of
100 GeV=c2 (1 TeV=c2, 10 TeV=c2). Figure 5 compares
these limits to those obtained by other experiments.

The DarkSide-50 detector is currently accumulating
exposure in a stable, low-background configuration with
the characteristics described above. We plan to conduct a
3-yr dark matter search with increased calibration statistics
and several improvements in data analysis (see Fig. 7 in
Appendix A). These first results show that UAr can
significantly extend the potential of argon for WIMP dark
matter searches. The ER rejection previously demonstrated
in AAr data and the reduction of 39Ar shown here already
imply that UAr exposures of at least 5.5 tonne-yr can be
made free of 39Ar background.
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FIG. 4. Distribution of events in the f90 vs S1 plane surviving
all cuts in the energy region of interest. Shaded blue with solid
blue outline: WIMP search region. The red points (with their
uncertainties) are derived from the SCENE measurements of NR
acceptance. The f90 acceptance contours are drawn by connecting
the red points and extending the contours using DarkSide-50
AmBe data (see text). Lighter shaded blue with dashed blue line
show that extending the WIMP search region to 99% f90 NR
acceptance is still far from ER backgrounds.

FIG. 5. Spin-independent WIMP-nucleon cross section
90% C.L. exclusion plots for the DarkSide-50 AAr (dotted red)
and UAr campaigns (dashed red), and combination of the UAr and
AAr [6] campaigns (solid red). Also shown are results from LUX
[26](solid black), XENON100 [27] (dashed black), PandaX-I [28]
(dotted black), CDMS [29] (solid green), PICO [30] (solid cyan),
ZEPLIN-III [31] (dash dotted black) and WARP [32] (magenta).
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APPENDIX: FIELD OFF SPECTRA
AND S2/S1 CUT

Figure 6 compares the measured field off spectra for the
UAr (blue) and AAr (black) targets, normalized to expo-
sure. The horizontal axis (“S1-late”) is the integral of the S1
pulse from 90 ns to 7 μs, which includes ∼70% of the total
S1 light for electron recoils (ERs). Despite the sacrifice of
photoelectron statistics, use of S1-late avoids distortion of
the spectra by digitizer saturation at high S1 values
(S1 > 2 × 103 PE) and, with the asymmetry correction
for S1 described above, gives a net improvement in the
pulse height resolution. The background γ-ray lines origi-
nate from identified levels of 238U, 232Th, 40K, and 60Co in
the detector construction materials and are consistent
with the expectations from our materials screening. The

repeatability in the positions of the peaks in the AAr and
UAr data shows the stability of the detector system as
a whole.
Figure 7 demonstrates available improvements in back-

ground rejection, which we do not utilize in this analysis.
When adding an S2/S1 cut (requiring that S2/S1 be lower
than the median value for NRs) and also xy fiducialization
(requiring the reconstructed radius to be less than 10 cm),
we obtain an even greater separation between the events
surviving the selection and the previously defined WIMP
search region. Should a signal appear in the region of
interest, the S2/S1 parameter would provide a powerful
additional handle in understanding its origin.
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