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Criteria for first- and second-order vibrational resonances and correct
evaluation of the Darling-Dennison resonance coefficients using the
canonical Van Vleck perturbation theory
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The second-order vibrational Hamiltonian of a semi-rigid polyatomic molecule when resonances
are present can be reduced to a quasi-diagonal form using second-order vibrational perturbation
theory. Obtaining exact vibrational energy levels requires subsequent numerical diagonalization of
the Hamiltonian matrix including the first- and second-order resonance coupling coefficients. While
the first-order Fermi resonance constants can be easily calculated, the evaluation of the second-
order Darling-Dennison constants requires more complicated algebra for seven individual cases
with different numbers of creation-annihilation vibrational quanta. The difficulty in precise evalu-
ation of the Darling-Dennison coefficients is associated with the previously unrecognized interfer-
ence with simultaneously present Fermi resonances that affect the form of the canonically trans-
formed Hamiltonian. For the first time, we have presented the correct form of the general expres-
sion for the evaluation of the Darling-Dennison constants that accounts for the underlying effect of
Fermi resonances. The physically meaningful criteria for selecting both Fermi and Darling-Dennison
resonances are discussed and illustrated using numerical examples. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4903927]

I. INTRODUCTION

Significant advances in applying variational solutions
to vibrational and vibration-rotational problems using ad-
vanced methods1–3 have demonstrated very high accuracy
in a purely ab initio prediction of vibrational and vibration-
rotational spectra. However, at present these methods are lim-
ited to small and highly symmetric molecules because such
methods require detailed knowledge of the global potential
energy surface (PES) far from the equilibrium minima. In
turn, quantum-mechanical evaluation of a global PES requires
calculations on huge spatial grids and the application of com-
plex forms of Hamiltonians with curvilinear coordinates.4

In addition, the size of the basis set dramatically grows
by an order of magnitude with the addition of each new
atom.

An alternative quantum-mechanical method of modeling
nuclear motion, anharmonic second-order vibrational pertur-
bation theory (VPT2) requires a Taylor expansion of elec-
tronic energy in powers of rectilinear normal coordinates
at the point of equilibrium, truncated at the fourth order.
Since many established quantum-mechanical methods (such
as MP2 or DFT) provide analytic second derivatives of the en-
ergy, the necessary expansion coefficients can be obtained by
single and double numerical differentiation of Hessians cal-
culated at displaced configurations. Moreover, quartic force
constants with four different indices do not markedly con-
tribute to anharmonic corrections and can often be omitted
(they only contribute to certain types of Darling-Dennison
constants). Such a representation of a PES is usually called
“semi-diagonal” and provides a good compromise for many
applications.5

The success of VPT2 in predicting anharmonic energy
levels up to rather high levels of excitation is partly explained
by the fact that VPT2 treatment provides an exact solution
for the Morse potential.6, 7 Matthews et al.8 wrote: “The fact
that VPT2 is exact for the Morse oscillator is surprisingly
poorly appreciated in the theoretical chemistry community.”
Another advantage of VPT2 is the fact that closed-form solu-
tions are available for the anharmonic constants.9–15 Account-
ing for the first-order Fermi and the second-order Darling-
Dennison resonance couplings is performed by diagonalizing
small-sized and sparse matrices, whose matrix elements can
also be evaluated using closed-form expressions.11, 12, 16–20 If
a molecule is not too large and the form of its polyad vector
can be identified,21–26 the matrix representation of the Hamil-
tonian becomes particularly suitable, as the matrix gains the
convenient block-diagonal structure with a common polyad
quantum number for each block.26 We can summarize that
the VPT2 approach is a simple, efficient, and economic tech-
nique for semi-rigid molecules containing up to 30-40 atoms
and even more.27–30 VPT2 is implemented in some popu-
lar quantum-mechanical packages as the default “black-box”
method for evaluation of anharmonic energy levels.5 In addi-
tion, VPT2 is capable of evaluating infrared and Raman in-
tensities and some other types of spectra such as VCD.31–40

One of the major problems associated with VPT2 is the
proper choice and treatment of vibrational resonances that
manifest themselves both in the first order (Fermi resonances
and associated W-constants) and in the second order (Darling-
Dennison resonances, K-constants). This two-step approach
was called VPT2+WK in the recent work of Rosnik and
Polik.20 We will follow this terminology. A recent work by
Bloino et al.41 presents a good review of the subject and
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introduces a degeneracy-corrected second-order perturbation
theory (DCPT2) and some of its modifications, such as hy-
brid DCPT2. That work is partly based on an earlier related
work42 that suggested a scheme of algebraic removal of the
resonance singularities from expressions for anharmonic con-
stants. The motivation of such studies is dual: VPT2+WK
must work in an automated mode for large molecules and
must ensure smooth variation of frequencies for reaction path
studies. However, this approach introduces some approxima-
tions and may not serve as a general solution of the resonance
problem.

At a glance, one might think that Darling-Dennison res-
onances are less important than Fermi ones. In fact, one
specific type of Darling-Dennison resonance (1-1, see be-
low) directly affects fundamental levels, and such effects can
be strong.30 This resonance also manifests itself in expres-
sions for the vibration-rotation interaction constants αB

r and
is called Coriolis resonance in this context.11 In addition,
Darling-Dennison resonances can cause substantial indirect
effect on fundamental levels if, for example, a fundamental
level is in a strong Fermi resonance with an overtone and that
overtone, in turn, is in strong Darling-Dennison resonance
with another overtone. In addition, coupled states participate
in substantial intensity redistribution; this effect can cause
changes in vibrational intensities by orders of magnitude.

There is one fundamental and underappreciated com-
plication associated with the VPT2 analytic formulas for
Darling-Dennison constants KDD. They were originally de-
rived for a resonance-free case and further modified “post-
factum” to account for Fermi resonance effects. As we will
show below, this approach can fail in certain cases and the
underlying theory must be reconsidered.

The first-order Femi resonances manifest themselves
by the appearance of near-singular terms with the so-called
“resonance denominators” of two types ((2ωr − ωs)

−1 and
(ωr − ωs − ωt)

−1) in formulas for anharmonic constants xrs
and Darling-Dennison constants KDD. The influence of Fermi
resonances on anharmonic constants can be accounted for by
manual removal of terms with such resonance denominators
and a simultaneous numerical diagonalization of a block of
the Hamiltonian matrix in the framework of a post-VPT2
variational “-WK” procedure.11–13, 43–45 The influence of the
first-order resonances on KDD can also be accounted for by
a removal of near-singular terms.17, 20, 46, 47 The question is
whether this procedure is fully justified theoretically. One of
the main goals of this paper is providing a comprehensive
answer.

What is most important is that in all existing publications
the derivations do not explicitly consider the effect of the first-
order Fermi resonances on the form of Darling-Dennison res-
onances from the very beginning. Instead, the traces of them
are accounted for “post-factum,” without proper considera-
tion of the complex superposition effect of transforming the
Hamiltonian in the presence of Fermi resonances. Current
work presents a systematic study of the second-order Darling-
Dennison resonances using the apparatus of the operator form
of canonical Van Vleck perturbation theory (CVPT) and leads
to a general method for the correct evaluation of Darling-
Dennison resonance constants.

Originally, the first literature description of the second-
order resonance appeared in 1940 in Darling and Dennison’s
paper on the infrared spectrum of H2O.48 It was discovered
that overtones of two O–H fundamentals were in resonance,
and therefore a good fit of a Dunham-type effective Hamil-
tonian to observed overtones 2ν1 and 2ν3 was impossible.
The class of second-order resonances is wider, and the term
“Darling-Dennison resonance” can be applied to six other
types, namely, 1-1, 2-11, 11-11, 1-3, 1-21, and 1-111 (the
dashed sign separates the total number of quanta of excitation
and relaxation). The values of resonance coupling coefficients
can be calculated using perturbation theory techniques in ma-
trix form (Rayleigh–Schrödinger perturbation theory, RSPT)
or in operator form (Canonical Van Vleck perturbation the-
ory, CVPT).16–20, 49 The expressions for 1-111, 1-21, and 1-3
resonances first appeared in the literature in 1997 in Martin
and Taylor’s paper with some misprints.17 A recent compre-
hensive paper by Rosnik and Polik provided a derivation and
correct expressions for all types of KDD constants.20 It is a
striking fact that some aspects of the evaluation of
the Darling-Dennison constants are still under theoretical
scrutiny, after 75 years since their discovery.

Part of the treatment of resonances involves making deci-
sions each time when a suspicious case appears. Does a poten-
tial coupling term indeed present a resonance or not? In this
connection Fermi resonances are handled quite well. There
is one classic work of Martin et al.45 that gives a recipe for
detecting both types of Fermi resonances on the grounds of
the difference between perturbative or variational accounting
for the contributions of cubic force constants ϕrrs and ϕrst to
energy levels. We will analyze this approach in detail below
and will show that Martin’s resonance criterion can be mod-
ified in such a way that it transforms to an approximate lin-
ear dependence f(x) ≈ x, where x is an acceptable error in
the calculation and f(x) is the value of the resonance crite-
rion. We will also consider another more general Fermi reso-
nance criterion, which is applicable to Darling-Dennison res-
onances. The existing methods of detecting Darling-Dennison
resonances have an empirical element and are based on con-
sideration of the values of resonance denominators, the ratio
of the coupling coefficient to the difference in energy levels
(we shall denote it as the Greek letter P), and values of KDD
themselves.20, 38, 40 We will show that in the framework of the
CVPT operator treatment, resonances of any type and at any
order can be treated universally.

There is one aspect of the subtle connection between the
manifestation of certain resonances and the polyad quantum
number to be considered.21–26 The dimension of the vector
space spanned by resonance vectors, composed of the powers
of creation and annihilation quanta for vibrational modes M,
is typically equal to M – 1.21, 26 This rule holds very well for
the majority of small molecules (up to ∼6 atoms). This re-
striction helps us decide whether a weak resonance should be
considered as a perturbation or a true resonance. However, a
full consideration of the connection between resonances and
polyads lies beyond the topic of this article because it requires
an expert knowledge and deep analysis in each particular case,
while we are mostly focused on a general picture and the au-
tomation of calculations.
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II. PERTURBATION THEORY AND ANHARMONIC
RESONANCES

A. Canonical transformations of the Hamiltonian
in the absence of resonances

Before proceeding to describe the analysis of main sub-
jects constituting the present study, we remind the reader of
the necessary prerequisites of VPT2, such as the choice of
coordinates, the form of the Hamiltonian and the method of
solution of the Schrödinger equation.

In order to find a system of vibrational energy levels of
a molecule, it is necessary to solve a quantum-mechanical
Schrödinger equation, which, in turn, is based on a par-
ticular choice of internal coordinates and the form of the
kinetic and potential energy operators. It is convenient to
work with the rectilinear dimensionless normal coordinates qr
= (4π2c2ωr(hc)−1)1/2Qr, where ωr is a harmonic frequency,
Qr is a Wilson normal coordinate, and with a conjugate mo-
mentum pr = −(−1)1/2(∂/∂qr) and employ a Watson vibra-
tional Hamiltonian for a non-rotating molecule (the rotational
quantum number J = 0),13

H = T + V =
[

1

2

∑
r

ωr

(
p2

r + q2
r

)]+
[

1

6

∑
rst

φrst qrqsqt

]

+
⎡
⎣ 1

24

∑
rstu

φrstuqrqsqtqu +
∑

α=x,y,z

Bα
e

⎛
⎝∑

r �=s

∑
t �=u

ζ α
rsζ

α
tu

(
ωs

ωr

)1/2 (
ωu

ωt

)1/2

qrpsqtpu

⎞
⎠
⎤
⎦ . (1)

Here the terms of the Hamiltonian are grouped by the or-
ders of VPT2. We limit our consideration to asymmetric
tops to simplify the formalism. The values of molecular
constants Bα

e , ζ α
rs , ωr (rotational constants, zeta-constants

for Coriolis coupling and harmonic frequencies) appear-
ing in the Hamiltonian from Eq. (1) can be found from
the equilibrium molecular structure and harmonic force
field, while the cubic and quartic force constants φrst
and φrstu can be found using numerical differentiation
techniques.50, 51

The solution of the Schrödinger equation to obtain the
energy levels of the Hamiltonian from Eq. (1) can be ac-
complished using different strategies, of which the varia-
tional method and perturbation theory are the most impor-
tant ones. In our previous publications49, 52, 53,30 and in the
present study, the Canonical Van Vleck Perturbation Theory
(CVPT) is our method of choice because of its generality and
convenience.

CVPT preserves the operator representation of the
Hamiltonian throughout the canonical transformations that
reduce the Hamiltonian to the desired quasi-diagonal form,
order by order.54–59,49 Although the solution can be ex-
tended to higher orders (fourth, etc.),57,49 we confine the
present study to the second order. We are mainly inter-
ested in a reconsideration and “fine-tuning” of the approach
based on analytic formulas, called the VPT2, using a gen-
eral and powerful numerical-analytic reference implementa-
tion of CVPT in the second order, CVPT2. As we indicated
in the Introduction, our principal aim is to obtain the correct
form for the second-order off-diagonal resonance coupling
coefficients.

First, let us consider the form of the once- and twice-
transformed Hamiltonian and analyze how vibrational reso-
nances affect the transformations. The general expression be-
low defines the form of the kth-order part of the Hamiltonian,

subjected to the Kth canonical transformation,59–61

H̃
(K)
k = H̃

(K−1)
k

+
n−1∑
j=0

in−j

(n − j )!

[
SK,

[
SK, ...

[
SK, H̃

(K−1)
K×j+m

]]
...
]

︸ ︷︷ ︸
n−j

,

(2)

where i = (−1)1/2, n = (k − m)/K, and m = mod(k, K) is the
remainder of the division of k by K. The transformation op-
erators SK play the key role in the canonical transformations;
they are defined at each order of CVPT in such a way that un-
wanted off-diagonal terms are cancelled after summation of
all parts of the Hamiltonian.

So far, it was implicitly assumed that the whole solution
of the Schrödinger equation is accomplished in the coordi-
nate and conjugate momentum representation (see Eq. (1)).
At this stage it is worthwhile to remind the reader that al-
though this classical representation was exclusively used in
many early studies on VPT2 and CVPT2, it is fundamentally
easier to employ a mathematically equivalent representation,
based on creation and annihilation operators (a†, a), further
abbreviated as CAO.55, 58 Then, the Hamiltonian from Eq. (1)
is re-expressed through CAO using the following definitions:

a† = 1√
2

(q − i p), a = 1√
2

(q + i p), (3)

q = 1√
2

(a† + a), p = 1√
2
i (a† − a). (4)

In addition, it is convenient to use an associated number op-
erator N̂, defined as follows:

N̂ = a†a, N̂ [n] = (a†)n(a)n. (5)
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For the following consideration, it is important to introduce
the concept of the normal form of CAO.62 An arbitrary mul-
tiple product of CAO can be reduced to an equivalent repre-
sentation of the form (a†)m(a)n, where m, n are non-negative
integers.

Birss and Choi55 showed that it is efficient to employ a
CAO-representation throughout the whole CVPT treatment,
especially because derivation of transformation operators SK
becomes simple in a new formulation. In particular, for ob-
taining the correct form of operator SK that is required for
cancellation of the following sum of off-diagonal Hamilto-
nian terms (where χ j are scalar multipliers),

H =
∑

j

χj

M∏
k=1

(a†
k)mkj (ak)nkj , mkj �= nkj , (6)

it is sufficient to multiply each term in Eq. (6) by −i
= −(−1)1/2 and an inverse linear combination, composed
of harmonic frequencies taken with integer number weights,
equal to powers mkj, nkj, positive for a creation operator and
negative for an annihilation operator,55

SK = −i
∑

j

χj

(
M∑

k=1

(mjk − njk)ωk

)−1 M∏
k=1

(a†
k)mjk (ak)njk .

(7)
The commutators [S, H̃ ] in Eq. (2) can be evaluated by re-
ducing the products SK and H̃ to the normal form through the
following equality:57,49

(a†)kal(a†)m(a)n

= (a†)k+m(a)l+n

+
min(l,m)∑

j=1

[(
1

j !

j−1∏
i=0

(l − i)(m − i)

)
(a†)k+m−j (a)l+n−j

]
,

(8)

where k, l, m, n are arbitrary non-negative powers of CAO. It
is also very convenient to describe vibrational resonances in
terms of CAO, as it will be discussed below.

Let us return to the general scheme of CVPT. Applying
the Eq. (2), we obtain the following form of the canonically
once transformed Hamiltonian,

H̃
(1)
0 = H0, (9a)

H̃
(1)
1 = H1 + i[S1,H0], (9b)

H̃
(1)
2 = H2 + i [S1,H1] − 1

2

[
S1, [S1,H0]

]
, (9c)

In the absence of resonance terms in H1, the corresponding
term H̃

(1)
1 can be nullified by the proper choice of opera-

tor S1. This circumstance allows simplifying the form of the
term H̃

(1)
2 as the double nested commutator can be replaced

using13

H
(1)
1 = 0 → 0 = H1 + i[S1,H0] → [S1,H0] = i H1. (10)

Therefore, the H̃
(1)
2 gains a more tractable form,

H̃
(1)
2 = H2 + 1

2 i [S1,H1]. (11)

The summation of terms yields the following formula,13

H̃ (1) = H0 + H2 + 1
2 i [S1,H1]. (12)

which still has some off-diagonal second-order terms. They
can be nullified by the second canonical transformation (bear-
ing in mind that the zero- and first-order terms in Eqs. (9a) and
(9b) are not affected by it) through using the expression

H̃
(2)
2 = H̃

(1)
2 + i [S2,H0]. (13)

The crucial point is that it is not necessary to consider the sec-
ond canonical transformation explicitly for the reason that it
does not modify the diagonal terms that are responsible for
the energy spectrum.56 The second transformation simply re-
moves all the remaining off-diagonal terms [see Eq. (13)] and
affects only the higher-order terms,

H̃
(2)
3 = H̃

(1)
3 + i

[
S2, H̃

(1)
1

]
, (14)

H̃
(2)
4 = H̃

(1)
4 + i

[
S2, H̃

(1)
2

]− 1
2 [S2, [S2,H0]]. (15)

The irrelevance of S2 for finding the eigenspectrum of H̃ (2) is
a reflection of the general rule known as the Wigner theorem:
“the block-diagonal part of the K-times transformed Hamilto-
nian coincides with the effective Hamiltonian up to order 2K
+ 1.”56

The explicit form of S2 is needed for canonical trans-
formations of the dipole moment operator and other molecu-
lar properties such as polarizability, etc.31–40 However, at this
stage our study is focused on the energy spectrum, as it de-
fines the positions of the vibrational bands. In order to obtain
the form of the energy expression as a function of vibrational
quantum numbers, it is sufficient to evaluate the diagonal ma-
trix elements of H̃ (1),

〈�A(ν̄)|H̃ (1)|�A(ν̄)〉 = 〈�A(ν̄)|H0 + H2

+ 1
2 i [S1,H1]|�A(ν̄)〉. (16)

The resulting expression is a familiar form of the Dunham-
type energy expansion as a function of vibrational quantum
numbers νr and spectroscopic constants G0, ωr, and xrs,

13

E(hc)−1 = G0 +
M∑
r

ωr

(
vr + 1

2

)

+
M∑

r≤s

xrs

(
vr + 1

2

)(
vs + 1

2

)
. (17)

The off-diagonal matrix elements of H̃ (1) are not necessarily
nil. At this stage we consider a resonance-free case; hence
we can regard all off-diagonal couplings as irrelevant on the
grounds that they should have been explicitly eliminated by
S2, if necessary.
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B. Canonical transformations of the Hamiltonian
in the presence of resonances

So far we were considering an idealized resonance-free
situation. However, resonance effects are universally present
in molecular dynamics. It is well known that the perturba-
tion treatment of resonance interactions usually leads to ab-
normally large values of anharmonic constants and poor fits
of Dunham’s energy expression to observed values. The treat-
ment of resonances was discussed in the early papers of
Nielsen9, 10, 63 and in numerous subsequent publications of dif-
ferent authors. The general method consists in separation of
resonance terms from the perturbation treatment and the nu-
merical diagonalization.

We will show below that the standard method of deal-
ing with the second-order resonances is not strict with regard
to evaluation of Darling-Dennison constants. In brief, usu-
ally the effect of the Fermi resonances on anharmonic con-
stants is dealt by removing the terms with so-called “reso-
nance denominators.”44, 45 The similar treatment of first-order
resonance effects in the expressions for the second-order
Darling-Dennison resonances has been also discussed in the
literature.17, 46, 47 However, it is not evident if the values of
Darling-Dennison constants obtained by the aforementioned
semi-empirical procedure of removal of the first-order reso-
nance terms coincide with the exact values. The term “exact
value” in this context relates to the possibility of carrying out
two canonical transformations explicitly in the framework of
the CVPT procedure, while maintaining an analytic operator
representation of the original and transformed Hamiltonian at
all stages until the final integration and determination of ma-
trix elements.57,49 It is therefore worthwhile to reconsider the
general formalism from the very beginning to highlight the
essence of the problem.

The general equations for the first canonical transfor-
mations in Eqs. (9a)–(9c) do not change significantly in the
case when the first- and/or second-order terms of the original
Hamiltonian are partly resonant. Equation (9b) can be rewrit-
ten as follows:

H
(1)
1 = H1 + i[S∗

1 ,H0] = (H ∗
1 + H

†
1 ) + i[S∗

1 ,H0]. (18)

Here we introduce a new notation that is based on partition-
ing the term H1 into purely non-resonant (∗) and purely res-
onant (†) parts, H1 = H ∗

1 + H
†
1 . Consequently, the canonical

transformation generator now only affects the non-resonant
terms; it is denoted S∗

1 . Now, only the non-resonant terms of
the Hamiltonian are cancelled, and the Eq. (10) gains a new
form,

H
(1)
1 = H

†
1 → H

†
1 = (H ∗

1 + H
†
1 ) + i[S∗

1 ,H0]

→ [S∗
1 ,H0] = i H ∗

1 . (19)

The modified generator S∗
1 must be further applied to

higher-order perturbations of the Hamiltonian, and the
second-order term gains the following form, analogous

to Eq. (9c):

H̃
(1)
2 = H2 + i[S∗

1 ,H1] − 1
2 [S∗

1 , [S∗
1 ,H0]]

= H2 + i[S∗
1 , (H ∗

1 + H
†
1 )] − 1

2 i [S∗
1 ,H ∗

1 ]

= H2 + 1
2 i [S∗

1 ,H ∗
1 ] + i[S∗

1 ,H
†
1 ]. (20)

After summation of all orders up to the second, we obtain the
final expression

H (1) = H0 + H
†
1 + H2 + 1

2 i [S∗
1 ,H ∗

1 ] + i[S∗
1 ,H

†
1 ]

= H0 + H
†
1 + H2 + 1

2 i [S∗
1 , (H ∗

1 + 2H
†
1 )]. (21)

This expression is the main one for obtaining both diagonal
and off-diagonal matrix elements; it properly accounts for the
first-order resonances. By comparing this expression with the
non-resonant one (Eq. (12)), we see that they are different.
First, there is the first-order unmodified term H

†
1 that makes

no direct contribution to diagonal matrix elements but creates
a small number of off-diagonal terms responsible for Fermi
resonances, which are further treated by a matrix diagonal-
ization. Second, the commutator 1

2 i [S1,H1] transforms into
1
2 i [S∗

1 , (H ∗
1 + 2H

†
1 )]. This difference requires further careful

consideration.
It is essential to remember that at the stage of derivation

of the closed-form expressions it is difficult to discriminate
the resonant parts from the non-resonant ones because the
difference depends on particular values of Hamiltonian con-
stants. The difficulty of this discrimination is the key point of
the whole problem. In order to compare the “pure” and “reso-
nant” forms of H(1) and to reveal the crucial point of our study,
let us return to the original resonance-free, Eqs. (9) and (10),
and separate the generator S1 into two parts, S∗

1 + S
†
1, the first

one must remain in the correct resonance-free treatment and
the second one is redundant and must be somehow eliminated
from the final expressions. Considering the key commutator
1
2 i[S1,H1] in Eq. (10), we therefore obtain

1
2 i[S1,H1] = 1

2 i [(S∗
1 + S

†
1), (H ∗

1 + H
†
1 )]

= 1
2 i [S∗

1 , (H ∗
1 + 2H

†
1 )] − 1

2 i[S∗
1 ,H

†
1 ]

+ 1
2 i [S†

1,H1]. (22)

Substitution of this commutator into Eq. (10) and com-
paring the result with the correct form of Eq. (21) shows that
the last two terms in Eq. (22) are redundant and must be re-
moved in the framework of a certain systematic procedure.
The “usual” expression (Eq. (10)) does not assume the pres-
ence of resonant terms, and the term H1 is also not separated
into resonant and non-resonant parts. Now, we have to under-
stand how to deal with two last commutators in Eq. (22).

Fortunately, the last commutator in Eq. (22), 1
2 i [S†

1,H1],
which contributes to both diagonal and off-diagonal matrix
elements, has a distinct “signature,” which is the presence
of well known “resonance denominators.” Such terms can be
manually eliminated, and this procedure for their removal is
a justification of the standard method of dealing with reso-
nances for both anharmonic constants and Darling-Dennison
ones.11–13, 17, 44–47,20 It can be easily proven that the terms,
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related to the commutator 1
2 i [S†

1,H1], are characterized by
the presence of the resonance denominators of the kind (±2ωi
± ωj)

−1 and (±ωi ± ωj ± ωk)−1, where certain combinations
of harmonic frequencies must be necessarily related to recog-
nized Fermi resonances.11–13

The remaining commutator − 1
2 i[S∗

1 ,H
†
1 ] in Eq. (22) is

also redundant, but it has no special features. Thus, we must
study it properties separately. This commutator is generally
not nil and consists of the off-diagonal operators with a to-
tal power equal to two or four which do not affect diago-
nal anharmonic constants. The crucial point of our study is
finding out whether this commutator affects the values of
Darling-Dennison constants. There are no evident prerequi-
sites that can ensure that this commutator cannot contribute
to the second-order off-diagonal matrix elements. We will not
reveal a final answer until Sec. III C but can say that we have
found the answer using numerical experiments for particular
molecules.

To conclude this section, we summarize that the cor-
rect expression for the anharmonic constants and Darling-
Dennison constants can be obtained as the following diagonal
and off-diagonal matrix elements, respectively,

〈�A(ν̄)|H (1)|�A(ν̄)〉
= 〈�A(ν̄)|H0 + H2 + 1

2 i [S∗
1 ,H ∗

1 ]|�A(ν̄)〉, (23)

〈�A(ν̄)|H (1)|�B(ν̄)〉
q = 〈�A(ν̄)|H2 + 1

2 i [S∗
1 ,H ∗

1 ] + i[S∗
1 ,H

†
1 ]|�B(ν̄)〉. (24)

Before we conclude this Section, we remind the reader
that it is convenient to express any resonance using CAO. The
operator F̂ = H

†
1 + H

†
2 , representing the off-diagonal part of

the Hamiltonian after two canonical transformations, has the
following general form:

F̂ =∑
j

[
Fj

M∏
k=1

((a†
jk)mjk (ajk)njk + (ajk)mjk (a†

jk)njk )

]
,

mjk �= njk,

M∑
k=1

mjkωk ≈
M∑

k=1

njkωk. (25)

As we mentioned above, it is not necessary to consider the
second canonical transformation explicitly, since small off-
diagonal terms, originating from H2, do not contribute to the
diagonal matrix elements in second order.

Individual terms in the resonance operator F̂ of Eq. (25)
can be classified by the total power of CAO into two cate-
gories: odd or even. Fermi resonances of types 1-2 and 1-11
are associated with operators of the following kind with odd
CAO powers,

F̂
(1)
i,jj = Fi,jj (a†

i )(aj )2, F̂
(1)
i,jk = Fi,jk(a†

i )(aj )(ak). (26)

Darling-Dennison resonances of types 1-1, 2-2, 2-11, 11-11,
1-3, 1-21, 1-111 appear at the second order of canonical trans-
formations, and the corresponding operators have a similar
form as Eq. (26). Of them, the 1-1 resonance is represented

by three types of operators,

F̂
(2)
i,j = Vi,j (a†

i )(aj ), F̂
(2)
ii,ij = Vii,ij (a†

i )N̂i(aj ),
(27)

F̂
(2)
ij,jk = Vij,jk(a†

i )N̂j (ak),

and will be considered in detail below.

C. The systematic choice of the first-order
resonance criteria

In the previous section we have seen that the first-order
Fermi resonances directly affect the Darling-Dennison reso-
nances. Therefore, it is important to introduce a systematic
and physically supported approach for the detection of Fermi
resonances.

Several kinds of physical quantities can be considered
for making a decision about the interaction between states
that should be treated as resonance. In the framework of
the standard Rayleigh-Schrödinger perturbation theory, a per-
turbed wave function in the first order can be expressed as
a linear combination of the zero-order wave functions, �

(1)
k

= ∑
l �=k

C
(1)
k,l �

(0)
l , where the coefficients of the linear combi-

nation are matrix elements for off-diagonal coupling di-
vided by the difference in zero-order energy levels, i.e., C

(1)
k,l

= 〈�(0)
l |F̂ |�(0)

k 〉
E

(0)
k − E

(0)
l

, where F̂ is a perturbation. These ratios de-

fine the level of mixing of zero-order states and characterize
the applicability of the perturbation theory.

One popular criterion of selecting Fermi resonances was
formulated by Martin et al.45 It is based on the estimation of
the effect of including or excluding the near-singular interac-
tion in the effective Hamiltonian for a fundamental transition
using the 2 × 2 model case. For a Type I Fermi resonance
(2ωi ≈ ωk) and for a Type II resonance (ωi + ωj ≈ ωk), re-
spectively, these effects X(I), X(II) are given by45

X(I ) = Diik

2

(√
1 + φ2

iik

4D2
iik

− 1 − φ2
iik

8�2
iik

)
, (28)

X(II ) = Dijk

2

(√
1 + φ2

ijk

2D2
ijk

− 1 − φ2
ijk

4�2
ijk

)
. (29)

Here the quantities �(ω) and D(ν∗), composed of harmonic
(ωi) and anharmonic (ν∗

i , (2νi)
∗, (νi + vj )∗) frequencies, have

the following meaning (the asterisk denotes deperturbation of
the anharmonic constants used for evaluation of fundamentals
and the values in brackets are for overtones and combination
bands, respectively):

�iik = 2ωi − ωk, �ijk = ωi + ωj − ωk, (30)

Diik = |(2νi)
∗ − ν∗

k |, Dijk = |(νi + νj )∗ − ν∗
k |. (31)

If effects X(I), X(II) exceed a threshold value X∗ and the value
of resonance denominator is less than a certain threshold
value �∗, the interaction considered must be treated variation-
ally. The criterion X(I), X(II) ≥ X∗ has dimension of cm−1 and
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is usually chosen empirically. For example, in Refs. 38 and 40
choosing �∗ = 200 cm−1 and X∗ = 1 cm−1 was suggested.

Let us consider the criterion used by Martin et al.45 in
more detail in order to reveal its strong and weak points.
The effect of “deperturbation” of the anharmonic constants
by removal of the terms containing denominators 2ωi − ωk
(Type I) or ωi + ωj − ωk (Type II) alters the values of the
fundamental frequencies νk as follows:45

ν
(I )
k = ν∗

k − φ2
iik

16�iik

, ν
(II )
k = ν∗

k − φ2
ijk

8�ijk

. (32)

On the other hand, the variational values of νk after the diag-
onalization of the 2 × 2 matrices(

(2νi)
∗ φiik/4

φiik/4 ν∗
k

)
,

(
(νi + νj )∗ φijk/

√
8

φijk/
√

8 ν∗
k

)
(33)

have the following roots (assuming that (2νi)
∗ > ν∗

k and
(νi + νj )∗ > ν∗

k ):

ν
(I )
± =

(
ν∗

k + Diik

2

)
± Diik

2

√
1 + φ2

iik

4D2
iik

, (34)

ν
(II )
± =

(
ν∗

k + Dijk

2

)
± Dijk

2

√
1 + φ2

ijk

2D2
ijk

. (35)

Choosing the correct signs in Eqs. (34) and (35) on the as-
sumption that 2ωi > ωk and ωi + ωj > ωk, we obtain, after
subtracting Eqs. (34) and (35) from Eq. (32),

ν
(I )
k − ν

(I )
− = − φ2

iik

16�iik

− Diik

2
+ Diik

2

√
1 + φ2

iik

4D2
iik

= − φ2
iik

16�iik

+ Diik

2

(√
1 + φ2

iik

4D2
iik

− 1

)
, (36)

ν
(II )
k − ν

(II )
− = − φ2

ijk

8�ijk

− Dijk

2
+ Dijk

2

√
1 + φ2

ijk

2D2
ijk

= − φ2
ijk

8�ijk

+ Dijk

2

(√
1 + φ2

ijk

2D2
ijk

− 1

)
. (37)

These expressions coincide with Eqs. (A24) and (A25) from
Ref. 45 if we accept that �(ω) ≈ D(ν∗). Since the quantities
D(ν∗) are unknown at the stage of selecting Fermi resonances,
there is no other alternative.

Martin et al.45 further simplified the quantities X(I) and
X(II) (Eqs. (28) and (29)) by taking the major part of the fol-
lowing expansion in a Taylor series:

f (x) = a

(√
1 + x − 1 − 1

2
x

)
≈ −1

8
a x2 + 1

16
a x3 + . . . .

(38)

Assuming X(I) and X(II) be functions of variables
φ2

iik

4D2
iik

and

φ2
ijk

2D2
ijk

, and assuming �(ω) ≈ D(ν∗), we obtain the following

simplification of Eqs. (28) and (29) using (38):

X(I ) = Diik

2

(√
1 + φ2

iik

4D2
iik

− 1 − φ2
iik

8�2
iik

)
≈ − φ4

iik

256�3
iik

,

(39)

X(II ) = Dijk

2

(√
1 + φ2

ijk

2D2
ijk

− 1 − φ2
ijk

4�2
ijk

)
≈ − φ4

ijk

64�3
ijk

.

(40)
A more general approach can be formulated on the basis

of direct consideration of the Canonical Van Vleck Perturba-
tion Theory in operator form. CVPT works well unless the
dimensionless scalar coefficients l of SK operators exceed a
certain threshold value ∗. These coefficients l have a sim-
ple structure (see Eq. (7)) as a Hamiltonian coefficient χ l (pro-
portional to a force constant in case of S1 or more complex
expressions in higher orders) divided by a linear combination
of zero-order frequencies, such as �iik = 2ωi − ωk or �ijk
= ωi + ωj − ωk in case of Fermi resonances (Types I and II).

It is easy to obtain explicit expressions for coefficients


(I )
l , 

(II )
l directly from the corresponding cubic terms of the

Hamiltonian. The force constant φiik has a factorial multiplier
of 1/3! and a combinatorial multiplicity factor of 3, producing
the net coefficient 1/2. Converting each power of a normal
coordinate into a CAO representation introduces a multiplier
2−1/2 (see Eq. (4)). In total, the 1-2 Fermi resonance operator
coefficient becomes (21/2/8)φiik. For the 1-11 Fermi resonance
operator coefficient we similarly obtain (the multiplicity fac-
tor = 6) the value of operator coefficient 8−1/2φijk. Dividing
these operator coefficients by the �iik and �ijk, we obtain the
following resonance conditions:


(I )
l = 1

2
√

8

∣∣∣∣ φiik

2ωi − ωk

∣∣∣∣ > ∗,
(41)


(II )
l = 1√

8

∣∣∣∣∣ φijk

ωi + ωj − ωk

∣∣∣∣∣ > ∗.

In higher orders, the coefficients l have a similar form as a
ratio of a more complex coefficient, divided by a linear combi-
nation of harmonic frequencies, as can be seen from Eq. (7).
The dimensionless quantity l can be called the resonance
index.49, 52 Essentially the same quantities as Eq. (41) were
empirically introduced in Refs. 64 and 65 for detecting Fermi
resonances, but without numerical coefficients, and the cut-off
value was chosen as 0.20.

There are many empirical ways to judge if certain levels
are strongly coupled and should be treated as resonant. For ex-
ample, fitting resonant spectroscopic terms by variation of an-
harmonic constants in the Dunham-type expansion will result
in an abnormal residual discrepancy. Darling and Dennison
discovered the 2-2 resonance in water molecule in this way.48

In addition, resonating groups of levels cause a significant re-
distribution of line intensities. There are many well-studied
cases of resonance effects in small molecules. By studying
typical values of quantities l for small molecules, it can be
found that the value of resonance index threshold ∗ typically
lies in the region 0.05-0.50 (unitless). Concerning the topic
of this paper, the biggest advantage of using the resonance
index is that it is physically meaningful and universal both for
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Fermi resonances and in second order, for Darling-Dennison
resonances, which minimizes the dependence on empiricism.

There is one novel method26 of finding the cutoff value
∗ of the resonance index. It is based on consideration of clus-
tering of vibrational states interlinked by multiple resonances.
Such clusters are called polyads, and this concept plays a
fundamental role in the theory of molecular vibrations and
dynamics.21–25 The Hamiltonian matrix arranged by polyad
states with the same value of a polyad quantum number has
a block-diagonal structure. It is evident that all interpolyad
interactions are non-resonant while within polyads there can
be multiple resonance interactions. Many thoroughly stud-
ied cases demonstrate this relationship. We have previously
shown26 that the analysis of the polyad structure and determi-
nation of the polyad coefficients (which are integer weight
coefficients that account for contributions of normal mode
quantum numbers into common polyad number) permits find-
ing the cutoff value ∗ for resonance interactions confined to
polyad blocks.

D. The relationship between resonance operator
coefficients and matrix elements

While VPT2 provides analytic expressions for Fermi res-
onance constants W and Darling-Dennison constants KDD, the
CVPT2 implementation yields the resonance operators ex-
pressed in creation/annihilation operators (CAO). In our opin-
ion, the calculation of values of matrix elements using the ex-
plicit form of resonance operators is a preferred scheme for
the final variational stage as it minimizes the risk of errors. To
be precise, when dealing with analytic formulas, it is essential
to know the location of all matrix elements that are contribut-
ing. On the other hand, when an overall effect of all available
resonances on a certain matrix element is needed, it is very
convenient to take a pair of wave functions, defined by sets
of their quantum numbers, and scan all available resonance
operators to obtain an exact result,

HAB = 〈v̄(A)|
∑

j

Fj

M∏
k=1

(a†
k)mkj (ak)nkj |v̄(B)〉. (42)

Therefore, when dealing with a large number of different
kinds of resonances, it is necessary to have handy formu-
las interconnecting coefficients F of resonance operators and
VPT2 constants W, K. A collection of such formulas for all
types of Fermi and Darling-Dennison resonances is provided
in the supplementary material.66 The case of the 1-1 Darling-
Dennison resonance is most complicated and is given by the
following expression:

Hr,s(v̄) = 〈vr + 1, vs |F̂r,s |vr, vs + 1〉
= 1

4

√
(vr + 1)(vs + 1)

×
[

3Krr,rs(vr + 1) + 3Krs,ss(vs + 1)

+
∑
j �=r,s

2Krj,sj

(
vj + 1

2

)]
�= 0

→ F̂r,s = Hr,s(vr = 1, vs = 1)[a†
r as + ara

†
s ]

+ 3

4

∑
k=r,s

Krk,sk[a†
r a

†
kakas + ara

†
kaka

†
s ]

+ 1

2

∑
k �=r,s

Krk,sk[a†
r asa

†
kak + ara

†
s a

†
kak]. (43)

E. Special case of Darling-Dennison resonance: 1-1

The 1-1 Darling-Dennison resonance is a special one
and its nature is rather unusual and interesting. Unlike any
other Fermi or Darling-Dennison resonance, the 1-1 type
couples two fundamental levels (they must have the same
symmetry). This type of resonance also manifests itself in
vibration-rotation coupling constants αB

r and is often called
Coriolis resonance.11 A classical example of 1-1 resonance
is formaldehyde, where ν2 and ν3 are coupled by a matrix
element 〈vj �=2 = 0, v2 = 1|F̂2,3|vk �=3 = 0, v3 = 1〉 = 7 cm−1.
Recently we observed a strong case of 1-1 resonance in the
porphin molecule.30

If such a resonance is manifesting itself for a certain
molecule, the family of corresponding resonance operators is
given by a set of M + 1 operators,49

F̂rs = f0a
†
r as +

M∑
j=1

fja
†
r N̂j as . (44)

This is an unusual situation as all the other first- and second-
order resonances can be represented by a single-term reso-
nance operator. The reason for this behavior is that a 1-1 res-
onance can be thought of as “zero-order resonance that man-
ifests itself only in the second order.” It should be noted that
within a commonly employed vibrational perturbation theory
model the zero-order is chosen in such a way that all degrees
of freedom are fully separated. Therefore, the absence of the
1-1 resonance at the first order in VPT2 is a consequence of
the chosen representation.

It was shown earlier that if a certain resonance first re-
veals itself in Lth order, then in (L+K)th order its operators
are appended with terms multiplied by number operators in
(K–L)/2th power.49, 59 Comparing Eq. (44) with the general
expression for the Kth order resonance operator,49, 59

F̂ (K) =
M∏
l=1

(a†
l )ml

[
f

(K)
0 +

M∑
j=1

f
(K)
j N̂j + . . .

+
M∑

j=1

M∑
k=j

. . . f
(K)
jk...N̂j N̂k . . .

] M∏
l=1

(al)
n

l , (45)

Eq. (44) can be rewritten as follows:

F̂
(2)
rs = a

†
r

⎡
⎣f

(2)
0 +

M∑
j=1

f
(2)
j N̂j

⎤
⎦ as. (46)

It was shown earlier49, 59 that the general form of the ma-
trix element corresponding to the resonance operator (45) is
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given by

X(K)
A,B =

〈
M∏
l=1

�0

(
vA

l

)∣∣∣∣∣ F̂ (K)

∣∣∣∣∣
M∏
l=1

�0

(
vB

l

)〉

=
(

M∏
l=1

C
(m

l
)

l C
(n

l
)

l

)⎡⎣f
(K)
0 +

M∑
j=1

f
(K)
j vj + . . . +

M∑
j=1

M∑
k=j

. . . f
(K)
jk vj vk . . .

⎤
⎦ , (47)

where (a typographical mistake in Eq. (6.23) of Ref. 49 is corrected here)

C
(m

l
)

l =
m

l∏
k=1

√
vA

l − k + 1, C
(n

l
)

l =
n

l∏
k=1

√
vB

l − k + 1. (48)

In the case of the 1-1 second order resonance, the matrix element expression (47) can be rewritten in the following form:

X(2)
A,B =

〈
M∏
l=1

�0

(
vA

l

)∣∣∣∣∣ F̂K

∣∣∣∣∣
M∏
l=1

�0

(
vB

l

)〉 =
(

M∏
l=1

C
(m

l
)

l C
(n

l
)

l

)⎡⎣f
(2)
0 +

M∑
j=1

f
(2)
j vj

⎤
⎦

=
(

M∏
l=1

C
(m

l
)

l C
(n

l
)

l

)⎡⎣
⎛
⎝f

(2)
0 − 1

2

M∑
j=1

f
(2)
j

⎞
⎠+

M∑
j=1

f
(2)
j

(
vj + 1

2

)⎤⎦ . (49)

It is useful to compare this expression with the more standard form of the 1-1 resonance matrix element. Hänninen and Halonen
gave the following formula:18

〈vr + 1, vs |Ĥ |vr, vs + 1〉 =
[
(vr + 1)(vs + 1)

]1/2

4

×
⎡
⎣3Krr,rs(vr + 1) + 3Krs,ss(vs + 1) +

∑
j �=r,s

2Krj,sj

(
vj + 1

2

)⎤⎦ =
[
(vr + 1)(vs + 1)

]1/2

4

×
⎡
⎣
⎛
⎝3(Krr,rs + Krs,ss) +

∑
j �=r,s

Krj,sj

⎞
⎠+ 3Krr,rsvr + 3Krs,ssvs + 2

∑
j �=r,s

Krj,sj vj

⎤
⎦ . (50)

The expressions for constants Krr, rs and Krj, sj are presented in Halonen’s work18 (Eqs. (12) and (13) in Ref. 18). Rosnik and
Polik20 gave separate expressions for Krr, rs and Krs, ss, but it is evident that one of them can be obtained from the other by
permutation of indices.

By comparing the expressions in Eqs. (49) and (50), we can see that the traditional equation (50) can be regrouped to match
the uniform structure of Eq. (49) where the expression in square brackets is a constant term plus a sum over all degrees of
freedom uniformly multiplied by a quantum numbers plus 1/2 (summation here includes indices r and s),

〈vr + 1, vs |H̃ |vr, vs + 1〉 =
[
(vr + 1)(vs + 1)

]1/2

4

⎡
⎣1

2
(K ′

rr,rs + K ′
rs,ss) +

M∑
j=1

K ′
rj,sj

(
vj + 1

2

)⎤⎦ , (51)

where K′
rr, rs = 3Krr, sr, K′

rs, ss = 3Krs, ss, K′
rj, sj = 2Krj, sj. By comparing Eq. (51) with Eq. (49), we obtain the relationships

between resonance operator coefficients f
(2)
j and constants K′,

1

2

(
K ′

rr,rs + K ′
rs,ss

) = 4

⎛
⎝f

(2)
0 − 1

2

M∑
j=1

f
(2)
j

⎞
⎠ , K ′

rj,sj = 4f
(2)
j , (52)

f
(2)
0 = 1

8

⎛
⎝K ′

rr,rs + K ′
rs,ss +

M∑
j=1

K ′
rj,sj

⎞
⎠ , f

(2)
j = 1

4
K ′

rj,sj . (53)

It is seen from Eqs. (43) and (51) that it is impossible to separate a unique constant that can be called “Darling-Dennison 1-1
resonance constant K

(1−1)
DD ” since it is dependent on quantum numbers. But the constant f

(2)
0 does possess the necessary property
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and can be considered in lieu of K
(1−1)
DD . For convenience, we present the expressions for modified constants K′,

K ′
aa,ab = 1

2
φaaab − 1

8

∑
k

φaakφabk

(
1

ωa + ωa + ωk

+ 1

−ωa − ωa + ωk

+ 4

ωk

)

−1

8

∑
k

φaakφabk

(
1

ωa + ωa + ωk

+ 1

−ωa − ωa + ωk

+ 2

ωa − ωa + ωk

+ 2

−ωa + ωa + ωk

)
, (54)

K ′
ac,bc = φabcc + 4

∑
α

Bαζ α
acζ

α
bc

ωaωb + ω2
c

ωc

√
ωaωb

− 1

4

∑
k

φkabφkcc

(
2

ωk

+ 1

ωa − ωb + ωk

+ 1

ωb − ωa + ωk

)

− 1

4

∑
k

φkacφkbc

(
1

ωa + ωb + ωk

+ 1

ωb − ωa + ωk

+ 1

ωa − ωb + ωk

+ 1

ωk − ωa − ωb

)
. (55)

A comprehensive derivation of expressions for all types
of Darling-Dennison resonance coupling constants was ac-
complished in a recent fine study of Rosnik and Polik.20 They
employed a matrix form of the canonical Van Vleck perturba-
tion theory and coordinate-conjugated momenta (q, p) rep-
resentation. The starting point of their study was a quartic
Watson Hamiltonian (1). Then, a sequence of matrix transfor-
mations was applied, that cancelled off-diagonal Hamiltonian
terms, subdivided into two classes, the weakly and strongly
interacting states, respectively. The order of transformations
and terminology is somewhat different from the standard
treatment of Papousek and Aliev,13 but the final results for all
KDD constants are correct, to the best of our knowledge. How-
ever, even the extraordinary thorough and accurate paper of
Rosnik and Polik20 is not free of errors as we shall see below
in the section concerning the zero-point vibrational energy.

F. Anharmonic zero-point vibrational energy (ZPVE)

Quantum chemistry permits finding an electronic energy
minimum of a molecule, and approximating the potential en-
ergy surface by a grid of points or the expansion coefficients
of a Taylor series. The system of quantized vibrational lev-
els is usually found through an independent solution of the
vibrational Schrödinger equation. The zero-point vibrational
energy (ZPVE or E0), corresponding to the lowest vibrational
quantum state, is an essential parameter for calculation of
thermodynamic functions, such as an internal energy. An ac-
curate calculation of the anharmonic quantum mechanical vi-
brational partition function, Qvib, that is a function of E0,
is necessary for the theoretical prediction of thermodynamic
functions and equilibrium constants. For instance, in applica-
tions of chemical reaction transition state theory, the values of
Qvib are required both for the reactants and at the saddle point,
or even for a series of geometries along the reaction path.67

The value of Qvib at temperature T is given by (where k is
a Boltzmann constant)

Qvib = exp
(−E0/kT

) ( M∏
r=1

[
1 − exp

(−νr/kT
)])−1

,

(56)
where νr are the fundamental vibrational frequencies.

Evidently, Qvib is a function of E0, and its evaluation is a
little tricky because it depends on both anharmonic constants
and the Dunham constant term G0, while each of these quan-
tities are dependent on the choice of Fermi resonances. After
summation of these two contributions (they both have partly
phenomenological character due to the nature of Dunham ex-
pansion) we must obtain the correct value of E0, which must
be independent on any kind of vibrational resonances. Evi-
dently, resonance terms present in G0 and anharmonic con-
stants mutually cancel each other, which obviates the need to
remove such terms.67 There is a number of publications with
expressions for calculation of both G0 and E0.5, 20, 42, 68–71 The
most recent publication by Rosnik and Polik20 gives the an
erroneous expression for G0 (Eq. (77) in Ref. 20), as the last
term but one should obviously be − 7

576

∑
k

φ2
kkkω

−1
k .

We have derived an alternative expression by comparing
formulas for ZPVE from Refs. 68, 70, and 71. The former pa-
per gives a more expanded expression while the latter works
present a more compact form, which, however, is erroneous in
the kinetic term. Taking the correct form of the kinetic term
from Ref. 68, we obtain

E0 = 1

2

∑
i

ωi − 1

32

∑
ijk

φiikφkjj

ωk

− 1

48

∑
ijk

φ2
ijk

ωi + ωj + ωk

+ 1

32

∑
ij

φiijj

− 1

4

∑
α=x,y,z

Bα
e

⎡
⎣1 −

∑
i>j

(
ζ α
ij

)2 (ωi − ωj )2

ωiωj

⎤
⎦ . (57)

Another attempt to rectify errors in the ZPVE
expression70, 71 was made in Refs. 40 and 41, but the fre-
quency ratio multiplier in their kinetic term is missing. Our
comparison of numerical results obtained by this formula
with ones calculated using numerical-analytic implementa-
tion of CVPT2 prove the correctness of the expression (57),
which is therefore recommended for general use because it is
resonance-free.
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TABLE I. Vibrational Fermi resonances of formaldehyde in the first order of CVPT.a

Resonance Average Ratio, Martin, Martin, Effect of
No. operator Freq. Denominator S-coeff. k W12/(E2 − E1) exact approx. diagonalization

1 1+13−2 3004.3 141.6 0.0985 0.1394 0.0514 0.0534 2.7491
2 1+14−2 2657.1 552.8 0.1119 0.1583 0.3307 0.3471 13.8513
3 1+16−2 2739.3 388.4 0.1124 0.1589 0.2360 0.2478 9.8113
4 1+12−13−1 3126.3 385.5 0.0555 0.0555 0.0036 0.0036 1.1862
5 2+15−16+1 3028.9 50.3 1.1159 1.1160 26.2810 78.0104 62.6369
6 3+15−16+1 2906.9 193.7 0.3542 0.3542 2.4610 3.0471 24.2928

aAll parameters, except dimensionless “S-coeff.” and “Ratio,” are given in units cm−1.

III. NUMERICAL EXAMPLES AND DISCUSSION

In this section we consider practical numerical exam-
ples concerning two main issues discussed theoretically in
Secs. II B and II C. First, we will determine if the com-
mutator term [S∗

1 ,H
†
1 ] contributing to the correct expres-

sion for Darling-Dennison constants (Eq. (21)), is signifi-
cant in specific cases and the degree of its importance. Two
classic molecules will be used as examples for the study:
formaldehyde (H2C=O) and ethylene (CH2=CH2). Second,
we will analyze the behavior of several Fermi resonance cri-
teria in a model case of H2O molecule and give practical
recommendations.

A. The method of calculation

For formaldehyde and ethylene molecules, we employed
essentially the same initial data and method of calculation as
used in our preceding study devoted to vibrational polyads.26

The CVPT2 calculations for both formaldehyde and ethylene
molecules were accomplished with full quartic force fields
obtained with the aid of MP2/aug-cc-pVTZ (formaldehyde)
and MP2/cc-pVTZ (ethylene) QM models. The numerical-
analytic operator CVPT computations were performed us-
ing our software package ANCO, described in detail in pre-
vious studies.49–52 In order to improve the agreement be-
tween calculated and observed fundamentals and ensure a
more accurate description of resonances, in the final stage
of the CVPT2 calculation initial harmonic frequencies were
replaced by values obtained from the advanced QM model
CCSD(T)/cc-pVQZ. This approach corresponds to the con-
cept of a “hybrid” force field,72, 73,52 wherein a quartic force
field of a lower QM level is combined with the values of ωr
(harmonic frequencies) imported from higher-level QM cal-
culations. The detection of Fermi and Darling-Dennison reso-

nances was accomplished using the resonance index ∗ equal
to 0.05.

B. Example No. 1: Fermi and Darling-Dennison
resonances of formaldehyde

In case of this molecule, the chosen resonance criterion
reveals 10 resonances in total, of which six are Fermi reso-
nances (three of 1-2 Type and three of 1-11 Type), and four
Darling-Dennison resonances (one of the 2-2 Type, two of
11-11 Type and one of 1-1 Type). Numerical-analytic evalu-
ation of the commutator [S∗

1 ,H
†
1 ] indicates that these opera-

tors have no common terms. Tables I and II present the sum-
mary of results of calculation of all resonance coefficients.
In these Tables, the column “Effect” denotes the “repulsion”
of energy levels as a consequence of diagonalization of the
2 × 2 matrix,[

Ē − ε K

K Ē + ε

]
, Ē = E2 + E1

2
,

ε = E2 − E1

2
, λ1,2 = Ē ± �,

(58)

� = ε

√
1 + K2

ε2
,

Effect = � − ε = E2 − E1

2

⎛
⎝
√

1 + 4K2

(E2 − E1)2
− 1

⎞
⎠ .

We have found that in the case of formaldehyde the
values of Darling-Dennison constants coincide within nu-
merical accuracy for both VPT2 (analytical) and CVPT2
(numerical-analytic operator) versions. This result is consis-
tent with the theoretical prediction made in Sec. II B that, if

TABLE II. Vibrational Darling-Dennison resonances of formaldehyde in the second order of CVPT.a

Resonance Average Ratio Effect of
No. operator Freq. Denominator S-coeff. k K12/(E2 − E1) KDD perturbed KDD depert. diagonalization

1 1+25−2 5937.3 140.5 0.2560 0.5119 − 143.8439 − 143.8439 30.2877
2 1+13+15−16−1 4373.7 194.7 0.1109 0.1109 − 6.3237 86.3493 2.3643
3 1+16+13−15−1 4373.7 335.2 0.0652 0.0652 148.7082 87.4769 1.4206
4 2−13+1 1659.5 244.0 0.0776 0.0287 6.9139a − 6.9913b 0.2002

aAll parameters, except dimensionless “S-coeff.” and “Ratio,” are given in units cm−1.
bThe value of matrix element itself is given.
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TABLE III. Vibrational Fermi resonances of ethylene in the first order of CVPT.a

Resonance Average Ratio, Effect of
No. operator Freq. Denominator S-coeff. k W12/(E2 − E1) Martin, exact Martin, approx. diagonalization

1 1+12−2 3249.6 184.43 0.1467 0.2075 − 0.3152 − 0.3418 7.9399
2 1+112−2 3053.5 207.67 0.1380 0.1951 − 0.2802 − 0.3012 7.9088
3 2−110+2 1656.5 28.82 0.3163 0.4474 − 0.8421 − 1.1546 5.7690
4 3+110−2 1504.6 274.98 0.0571 0.0808 − 0.0116 − 0.0117 1.7956
5 1−12+13+1 3097.7 119.37 0.1246 0.1246 − 0.0279 − 0.0288 1.8545
6 2+15−16+1 3068.6 309.33 0.2039 0.2039 − 0.4942 − 0.5345 12.8578
7 2+111−112+1 3143.7 4.13 11.2706 11.2706 − 480.24 − 66661.4 524.7842
8 6+19−112+1 2983.6 531.40 0.1458 0.1458 − 0.2305 − 0.2402 11.2987
9 3+111−112+1 2991.8 299.67 0.1223 0.1223 − 0.0651 − 0.0670 4.4809
10 7+18+112−1 1694.0 438.29 0.0834 0.0834 − 0.0209 − 0.0212 3.0460

aAll parameters, except dimensionless “S-coeff.” and “Ratio,” are given in units cm−1.

the commutator [S∗
1 ,H

†
1 ] is nil, VPT2 produces the correct

result.
From Table I we can see that the resonance index k

varies within one order of magnitude (0.056–1.116, unitless),
while Martin’s criteria X(I), X(II) varies in the range of four
orders of magnitude (0.004–26.28, in cm−1). This wide range
makes it difficult to choose a definitive value of Martin’s
criteria. There is another interesting result: for Fermi reso-
nances, the ratio P = W12/(E2 − E1) shows a very good cor-
relation with the resonance index k. Indeed, these quanti-
ties coincide for 1-11 resonances, for which the values of
matrix elements are products of W-constants and a quan-
tity
√

(vr + 1)(vs + 1)(vt + 1), equal to unity for zero quan-
tum numbers. However, 1-2 Fermi resonances are multiplied
by a quantity

√
(vr + 1)(vr + 2)(vs + 1) where the multiplier

(vr + 2) originates from the second power in the resonance
operator F̂rr,s = W [(a†

r )2as + (ar )2a
†
s ], and therefore the res-

onance index k differs from the ratio P = W12/(E2 − E1) by
the factor 21/2.

Inspection of Table II makes it possible to draw the fol-
lowing major conclusions. First, it is evident that except for
the 2-2 resonance, all “perturbed” values of KDD are sub-
stantially different from the correct ones. Another interest-
ing conclusion concerns the correlation between k coeffi-
cients and ratios P = H12/(E2 − E1). For two 11-11 reso-
nances, these ratios coincide with k coefficients, because the
multiplier inside the square root for corresponding matrix el-
ement Hrs,tu(ν̄) = 1

4Krs,tu

√
(vr + 1)(vs + 1)(vt + 1)(vu + 1)

is equal to unity for zero quantum numbers (see also general
equation (47)). However, the ratio P for the 2-2 resonance is
a double of the k coefficient, since the same kind of multi-
plier in Hrr,ss(ν̄) = 1

4Krr,ss

√
(vr + 1)(vr + 2)(vs + 1)(vs + 2)

is equal to two. This interesting observation leads to a propo-
sition that if the ratios P = H12/(E2 − E1) are taken as the ma-
jor resonance criterion, these quantities can be conveniently
evaluated through k coefficients by taking into account the
powers of the CAO to which they correspond. The approach
of this kind can be a subject of futures studies. This finding is
especially interesting for bigger molecules, for which it is in-
creasingly difficult to find a unique form of the polyad vector,
that must be orthogonal to a subspace of resonance vectors,
whose dimensionality must be exactly equal to M – 1.26

C. Example No. 2: Fermi and Darling-Dennison
resonances of ethylene

For the molecule of ethylene, the chosen resonance crite-
rion reveals ten Fermi resonances (four of 1-2 Type and six of
1-11 Type), and 26 Darling-Dennison resonances (six of the
2-2 Type, and 20 of the 11-11 Type). The summary of results
is listed in Tables III and IV. Concerning Fermi resonances,
the results obtained support the conclusions, drawn above for
formaldehyde. There is one case when the resonance index
k is nearly equal for resonances 1−12+13+1 (0.1246) and
6+19−112+1 (0.1458), while Martin’s criteria are different by
an order of magnitude (0.0288 and 0.2402, respectively). A
strong resonance 2+111−112+1 produces an abnormally high
value (6.67 × 105 cm−1) for the approximate version of Mar-
tin’s criterion, while its exact form yields 480 cm−1.

CVPT2 evaluation of the commutator [S∗
1 ,H

†
1 ] produces

the following result:

[S∗
1 ,H

†
1 ] = 5.7332 a

†
3a

†
9a5a12 + 2.6501 a

†
1a

†
12a3a11

− 1.3001 a
†
6a

†
10a7a8 + H.conj. (59)

This means that the values of matrix elements obtained
by the exact numerical-analytic version of CVPT2, corre-
sponding to Darling-Dennison resonances 3+19+15−112−1,
1+112+13−111−1, and 6+110+17−18−1, must differ from the
approximate treatment of VPT2, based on analytic formulas.
Indeed (see Table IV), numerical values of KDD are different;
in one case (3+19+15−112−1) an incorrect value is bigger by
∼40%. Although this difference is not dramatic, we can draw
an important conclusion that the previously overlooked effect
of “interference” of Fermi and Darling-Dennison resonances
must be taken into account.

As it is seen from the Table IV, in one case
(1+112+12−111−1) the “perturbed” value of KDD is dramat-
ically different (more than thirty times bigger) from the cor-
rect value, which means that careful accounting of Fermi reso-
nances in the framework of traditional procedure of removing
terms with resonance denominators is absolutely necessary.

There is also one small 1-1 Darling-Dennison resonance
(not shown in the Table IV) between modes 2 and 3 with
a matrix element connecting fundamental levels equal to
−3.95 cm−1. If resonance denominators are not removed, the
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TABLE IV. Vibrational Darling-Dennison resonances of ethylene in the second order of CVPT.a

Resonance Average Ratio Effect of
No. operator freq. Denominator S-coeff. k K12/(E2 − E1) KDD, perturbed KDD, depert. KDD, exact diagonalization

1 1+25−2 6380.7 131.75 0.1265 0.2529 − 66.6456 − 66.6456 − 66.6456 7.9485
2 1−29+2 6406.7 183.81 0.0850 0.1700 − 62.5042 − 62.5042 − 62.5042 5.1683
3 1+211−2 6299.1 31.50 0.4481 0.8963 − 56.4733 − 56.4733 − 56.4733 16.5811
4 5+29−2 6472.6 52.06 0.3154 0.6307 − 65.6651 − 65.6651 − 65.6651 15.8698
5 5+211−2 6364.9 163.26 0.0939 0.1878 − 61.3069 − 61.3069 − 61.3069 5.5658
6 9+211−2 6391.0 215.31 0.0743 0.1486 − 64.0067 − 64.0067 − 64.0067 4.6562
7 1−15−19+111+1 6385.8 10.28 5.6087 5.6087 − 230.5387 − 230.5387 − 230.5387 52.7253
8 1+15−19+111−1 6385.8 41.78 1.4179 1.4179 − 236.9678 − 236.9678 − 236.9678 41.9271
9 1+17−18+111−1 4106.1 1.90 1.2636 1.2636 − 9.5895 − 9.5895 − 9.5895 1.6296
10 1+15−19−111+1 6385.8 173.53 0.3677 0.3677 − 255.2217 − 255.2217 − 255.2217 20.9348
11 1+14+18−19−1 4201.4 8.63 0.2380 0.2380 8.2183 8.2183 8.2183 0.4641
12 1+13+111−112−1 4570.5 92.00 0.1259 0.1259 −12.0801 −46.3233 − 46.3233 1.4354
13 1−14−15+17+1 4197.2 17.01 0.1123 0.1123 7.6413 7.6413 7.6413 0.2119
14 1+17+18−111−1 4106.1 33.40 0.0845 0.0845 − 11.2908 − 11.2908 − 11.2908 0.2369
15 1−13−15+16+1 4495.4 58.20 0.0722 0.0722 16.8105 16.8105 16.8105 0.3019
16 1+112+13−111−1 4570.5 123.51 0.0711 0.0818 −356.7138 −40.4188 −35.1187 0.8213
17 1+112+12−111−1 4722.4 180.30 0.0580 0.0580 −1276.2398 −41.8157 − 41.8157 0.6041
18 2+15−19+112−1 4809.2 222.08 0.0574 0.0574 −0.9703 −50.9580 − 50.9580 0.7284
19 3+15+19−112−1 4657.3 133.78 0.0600 0.0600 − 32.1343 − 32.1343 − 32.1343 0.4807
20 3+19+15−112−1 4657.3 81.73 0.0984 0.1335 −30.4153 −43.6451 −32.1787 1.4317
21 3+16−19−111+1 4500.5 16.42 0.2285 0.2285 15.0095 15.0095 15.0095 0.8169
22 4+17−19−111+1 4202.3 24.77 0.0989 0.0989 9.7959 9.7959 9.7959 0.2398
23 4+15−18−111+1 4180.5 18.91 0.0884 0.0884 6.6860 6.6859 6.6859 0.1466
24 5+17+18−19−1 4192.9 8.38 0.7846 0.7846 − 26.2950 − 26.2949 − 26.2949 3.6058
25 5+17−18+19−1 4192.9 43.68 0.1364 0.1364 − 23.8268 − 23.8268 − 23.8268 0.7978
26 6+110+17−18−1 1988.6 150.93 0.0752 0.0709 −46.3202 −42.8246 −45.4248 0.7556

aAll parameters, except dimensionless “S-coeff.” and “Ratio,” are given in units cm−1.

value becomes 100.7 cm−1, which would cause a significant
shift of fundamental levels (over 30 cm−1).

D. Model case: 1-2 Fermi resonance in water:
Comparison of resonance parameters

Our final numerical study is the comparison of the be-
havior of different resonance parameters (such as resonance
index k, Martin’s criteria X(I), X(II), the ratio of the cou-
pling coefficient to the difference in energy levels P = H12/
(E2 − E1)) and their correlation to the error in predicted fre-
quencies, introduced by inclusion or exclusion of a certain
resonance into explicit special consideration. We studied a nu-
merical example, realistically modeling the classical 1-2 (ν1–
2×ν2) Fermi resonance for the H2O molecule. We employed
a modified quartic force field calculated by the quantum-
mechanical model MP2/aug-cc-pVTZ. Before proceeding to
the analysis of Fermi resonance, it is worthwhile mention-
ing that our calculation predicts the value −147.67 cm−1

for the Darling-Dennison constant KDD, which closely (error
<1%) agrees with the classical experimental value of |KDD|
= 148.92 cm−1.48

For isolation of this resonance from unwanted couplings
with a 2-2 resonance (2ν1–2ν3), all cubic and quartic force
constants for the third normal coordinate q3 (B2) were set
equal to zero. The values of surviving parameters of the
Hamiltonian are as follows:

(1) Quadratic force constants (cm−1):
ω1 = 3821.88, ω2 = 1628.37, ω3 = 3947.71.

(2) Cubic force constants (cm−1):
ϕ111 = −1790.40, ϕ112 = 77.97, ϕ122 = 313.03, ϕ222
= −250.69.

(3) Quartic force constants (cm−1):
ϕ1111 = 752.47, ϕ1112 = −63.68, ϕ1122 = −305.40, ϕ1222
= 154.61, ϕ2222 = −44.35.

(4) Vibration-rotation parameters (Bα
e in cm−1, ζ α

rs dimen-
sionless):
Bx

e = 9.4488, B
y
e = 26.9476, Bz

e = 14.5509, ζ x
13

= 0.0116, ζ x
23 = 0.9999.

For the ν1–2ν2 Fermi resonance the harmonic frequency
denominator � = |ω1 − 2ω2| is equal to 565 cm−1, and
the value of the resonance index is equal to 0.0979. We var-
ied ω2 from its original value up so that the denominator
was gradually decreased to a minimum value of 25 cm−1 in
steps of 5 cm−1. At each point, the error ε = ν

†
1 − ν1 intro-

duced by the perturbation treatment of this resonance was
measured as a difference between two types of solutions as
indicated below. Since there is a small local minimum of ε

= 0.1785 near the value of the denominator � = 400 cm−1,
we excluded results above this value for the reason that we
also analyzed the inverted dependence of resonance parame-
ters as functions of the error.

Solution A. The presence of the Fermi resonance was
ignored, and all terms are treated as perturbations. This
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corresponds to inclusion of the middle term in the square
brackets in the expression for the anharmonic constant

xrr = 1

16
φrrrr − 1

32

M∑
s=1

φ2
rrs

[
1

2ωr + ωs

− 1

2ωr −ωs

+ 4

ωs

]
.

(60)
After calculation of all anharmonic constants the values of
ν
†
1 and 2ν

†
2 were calculated using the standard Dunham-type

expansion of Eq. (17). The diagonalization of the Hamil-
tonian matrix was not performed as it was already fully
diagonal.

Solution B. The Fermi resonance was accounted for by
the usual two-step procedure (VPT2+W). Anharmonic con-
stants were calculated with exclusion of the middle resonant
terms in the expression of Eq. (60) above, yielding “deper-
turbed” values,

x∗
rr = 1

16
φrrrr − 1

32

M∑
s=1

φ2
rrs

[
1

2ωr + ωs

+ 4

ωs

]
. (61)

Afterwards, deperturbed values of ν∗
1 and (2 × ν2)∗ were

calculated, as usual. Accounting for the Fermi resonance was
properly accomplished through the variational diagonaliza-
tion of the 2 × 2 Hamiltonian matrix with a Fermi resonance
constant of W = 1

4φ122, yielding the final values of ν1 and
2ν2. At each point of the calculation, defined by the value of
the resonance denominator (in cm−1), the following parame-
ters were calculated:

(1) The value of error, introduced by the perturbative ac-
counting for the resonance instead of its correct varia-
tional (†) treatment: ε = ν

†
1 − ν1.

(2) The value of the dimensionless resonance index , mul-
tiplied by 20 to provide commensurate comparison with
other parameters, expressed in cm−1,


(20×)
122 = (20×)

√
2

8

∣∣∣∣ φ122

ω1 − 2ω22

∣∣∣∣ . (62)

(3) The values of Martin’s resonance criterion X(I) in two
forms, exact (X(I )

2 ) and approximate (X(I )
4 ), where sub-

script corresponds to the power of φ122 (see Sec. (II C)
above).

(4) The value of an additional resonance criterion Z, intro-
duced in one of our previous papers.74 This criterion de-
termines the effect of the perturbation contribution of cu-
bic force constants ϕkkl, ϕklm, corresponding to a certain
Fermi resonance, to the final value of the related fun-
damental frequency νk. The effects Z

(I )
k and Z

(II )
k , when

accounting for the Types I and II Fermi resonances on νk
by the removal of the corresponding “offending” terms
in the anharmonic constants and using the “deperturbed”
constants x∗

ii , x
∗
ij , are given by72

Z
(I )
k = ν∗

k − νk = φ2
iik

16�iik

, Z
(II )
k = ν∗

k − νk = φ2
ijk

8�ijk

.

(63)

All five parameters described above are displayed on
Fig. 1 graphically. Visual inspection of this figure instantly

FIG. 1. Functional dependence of five resonance parameters on the strength
of the Fermi resonance (ν1–2ν2) for the H2O molecule. The strength is
changed by variation of ω2 in the resonance denominator � = |2ω2 − ω1|.

shows that there is a very good correlation between the res-
onance index and the exact form of Martin’s criterion X(I).
However, an approximate form of Martin’s criterion is cor-
related more poorly. The additional resonance criterion Z

(I )
k

shows generally good correlation with the resonance index,
but has a systematic shift.

In order to clarify the fine details of behavior of different
resonance criteria, the functional dependences were inverted
in such a way that the error (ε) became the abscissa of the
graph and the other parameters became ordinates. Evidently,
such a graph should show the dependence of all resonance pa-
rameters as a function of the acceptable error, introduced by
an improper treatment of a certain resonance. The new form
of these functional dependencies is displayed in Fig. 2 with
an enlarged scale for a general overview and in Fig. 3 on a
smaller scale. It is evident that both Martin’s criteria have

FIG. 2. Functional dependence (general overview) of five resonance param-
eters on the error, introduced by an improper treatment of Fermi resonance
(ν1–2ν2) for the H2O molecule.
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FIG. 3. Functional dependence (enlarged view) of five resonance parameters
on the admitted error, introduced by an improper treatment of Fermi reso-
nance (ν1–2ν2) for the H2O molecule.

more-or-less linear behavior as a function of acceptable er-
ror, while the resonance index behaves rather as a square root
function. If an acceptable error is 1 cm−1, then the value of
corresponding Martin’s criteria is about 3 cm−1. We can con-
clude that the value of X(I) = 1 cm−1, suggested earlier in
Ref. 38, would have provided a good accuracy of 0.25 cm−1

in this case. The resonance index changes sharply for smaller
values of the acceptable error and for very big values of error
stays almost unaltered. In this particular case the acceptable
error of 1 cm−1 corresponds to the value of resonance index
equal to 0.26, and the error of 0.5 cm−1 corresponds to 0.22.

IV. CONCLUSIONS

The literature provides analytical expressions, within the
second-order perturbation theory, for Darling-Dennison res-
onance coupling coefficients (KDD) of different types (2-2,
2-11, 11-11, 1-3, 1-21, 1-111, 1-1).16–20 These expressions in-
clude denominators with linear combinations of harmonic fre-
quencies, originating from the first-order Fermi resonances.
Ignoring abnormally small values of these denominators can
lead to anomalous values of KDD, and a manual removal of
such terms had been suggested as the remedy.17, 20, 46, 47

For the first time, we have proven theoretically and
demonstrated numerically that, in certain cases this treat-
ment may produce incorrect results. Precisely speaking, a
commutator term [S∗

1 ,H
†
1 ] (see Eq. (21) and explanation in

Sec. II B) is responsible for the difference between previously
used analytic expressions and a correct result, which properly
accounts for the presence of Fermi resonance effects in KDD.
It is difficult to ensure full accounting of this effect in the
form of analytic formulas. The reason is that breaking down
the cubic terms of the original Hamiltonian into resonant H

†
1

and non-resonant terms, eliminated with the aid of operator
S∗

1 , cannot be done before numerical values of Hamiltonian
constants are known. A numerical-analytic implementation

of CVPT is capable of handling this situation and producing
correct KDD values. A numerical example with the ethylene
molecule has convincingly proven the correctness of the the-
oretical predictions.

Generally speaking, the set of formulas and procedures
needed for a numerical-analytic implementation of CVPT is
rather compact in comparison to the traditional sets of formu-
las, thereby making the CVPT option preferable, at least for
molecules of medium size (up to 10-12 atoms), for which the
volume of intermediate data is small enough (a few gigabytes
of a hard disk space) and the speed of calculations on a desk-
top computer is sufficiently fast (a few hours). For molecules
of much bigger size (tens of atoms), VPT2 in a traditional im-
plementation is a preferred option for economical reasons. We
have implemented both methods in the framework of the same
software package (ANCO) to simplify verification of results
and to facilitate easy switching between these methods.

Another part of the problem associated with both Fermi
and Darling-Dennison resonances is having a reliable method
for deciding if a particular coupling is a resonance. We ana-
lyzed a widely used Fermi resonance criterion introduced by
Martin et al.45 and advocated by Barone’s group.5, 38, 40 This
criterion is usually expressed in a truncated form as the lead-
ing term of the Taylor expansion (Eqs. (39) and (40) above).
Our study shows that it is much better to employ this criterion
in its full form. The model case (H2O) shows that the func-
tional dependency of both forms of Martin’s criteria from the
acceptable error as an argument has a nearly linear charac-
ter in a wide range of variation of the error (see Fig. 3). For
example, the truncated form of Martin’s criterion can be mul-
tiplied by a factor of approximately 3.0 and then this func-
tional dependency gains the simple linear form f(x) ≈ x, and
for the full form of Martin’s criterion this coefficient is equal
to ≈2.0.

For the Darling-Dennison resonances in formaldehyde
and ethylene, the detailed comparison of the values of the
resonance index, constants KDD themselves and coupling co-
efficient to energy difference ratio P = H12/(E2 − E1) leads
to the conclusion that the most universal resonance criterion
is the latter ratio. This ratio can be accurately calculated by
numerical-analytic implementation of CVPT2 and also with
sufficient accuracy for practical needs by a set of analytic for-
mulas of VPT2. A typical value of this ratio, indicating the
presence of a resonance at any order or type, is 1/10, which
means that the resonance-free case takes place when the dif-
ference in energy levels is an order of magnitude larger than
the corresponding matrix coupling coefficient. This univer-
sal criterion of resonances obviates the need to specify case-
specific resonances parameters.38 A definitive answer (yes or
no) about any particular coupling can be made with the aid
of additional polyad analysis.21, 26 Finally, it should be noted
that the model considered is based on the concept of normal
modes with rectilinear finite displacements of atoms from the
equilibrium point and the corresponding Watson Hamiltonian.
Alternative perturbative approaches can employ other types
of coordinate representations and Hamiltonians, in the frame-
work of which the resonance effects will also occur, but the
form of resonance operators and corresponding numerical co-
efficients will be different.
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