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Coupled electron and proton transfer observed in flow-flash experiments on CO-inhibited mixed-valence
cytochromec oxidase is discussed in terms of a model proposed by Brzezinski and co-workers [J. Bioenerg.
Biomembr. 1998, 30, 99-107]. The model includes two redox states of the hemea/hemea3 pair and two
states, protonated and deprotonated, of a redox-linked group L, which is in contact with bulk solution via a
proton conducting channel. The proton channel is represented by another protolytic group L′, which is in
equilibrium with bulk solution, but not with group L. The theory reproduces the experimentally observed pH
dependence of the slow kinetics of hemea reduction following dissociation of the enzyme-CO complex,
and additionally predicts a pH dependence of the fast kinetics due to varying proton equilibrium between
group L and bulk solution prior to dissociation. The rates of internal proton transfer between L and L′ in the
reduced and oxidized states, and the bimolecular rate of protonation of L′ by bulk protons have been evaluated
from the present theory and experimental data. The protonation rate of the group L in the reduced state of
hemea3 is kon

red ) 104 s-1. From the observed pH dependence of the rate constant for the slow kinetic phase
of backward electron transfer the rate of L′ protonation is estimated to beκ′on ) 5 × 1011 M-1 s-1.

1. Introduction

Cytochromec oxidase (CcO) performs an important function
of translocating protons across the inner mitochondrial mem-
brane, and thereby creating the membrane potential, by utilizing
the energy released in dioxygen reduction.1 Crystalline structures
of CcO from bovine heart and some bacteria at high resolution
have been recently obtained.2-5 CcO performance under various
conditions has been investigated in great detail (for recent
reviews see refs 6-9). Theoretical studies of CcO include
calculations of electrostatic potentials and interaction energies
of ionizable groups of this enzyme,10 molecular dynamics
simulations,11 ab initio studies of coupled electron-proton
transfer,12 proton conducting networks (proton wires),13-17

electron tunneling pathways,18 and others.
The development of a detailed kinetic model of the catalytic

cycle is one of the major theoretical challenges. Such a model
could be based on the assumption that the oxidase possesses a
set of states with well-defined state energies and state-to-state
rate constants. The specific CcO model could be characterized
by parameters (energies and rate constants) found from experi-
mental and calculated data. This program is far from being
implemented in full yet. However, simpler models have been
proposed for interpreting the results of particular experiments19-25

that characterize different steps of the catalytic cycle of the
enzyme. The development of simple models can be considered
as a first step toward constructing a more complete model of
the enzyme. In this paper we consider one of such models.

Recently, Brzezinski and co-workers19-22 have measured the
kinetics of electron transfer between hemesa3 anda. Initially,
the oxidase is fully oxidized except for the binuclear center held
in the reduced state by carbon monoxide bound to it. The CcO-

CO complex is dissociated by a laser flash, and subsequent
changes in the populations of the redox states are monitored.
The fast decay on the microsecond (µs) time scale is attributed
to electron transfer that is not coupled to proton translocation,
and the slow decay (the millisecond (ms) phase) is thought to
be due to coupled electron-proton transfer. The authors
proposed a simple model (see Figure 1), which includes two
redox states of hemea3 and two states (protonated and
deprotonated) of a protonatable group L, which electrostatically
interacts with hemea3. This group communicates with bulk
solution via a proton channel identified as the K-channel in ref
22. The proton channel is represented by a single protonatable
group L′, which is in contact with both L and bulk solution
and does not interact with L, nor with hemea3. The following
scheme is considered for proton transfer between bulk solution
(BS) and group L,

Here, a3
2+/3+L represents group L interacting with hemea3.

† Russian Academy of Sciences.
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Figure 1. Four-state model by Brzezinski et al.19-22 Solid lines, fast
electron transfer. Dashed lines, slow proton transfer.

a3
2+/3+L T L′ T BS (1.1)
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Because of this interaction pKa of this group depends on the
redox state of hemea3. The bulk solution is characterized by a
given value of pH fixed by experimental conditions.

In this paper we present a detailed treatment of Brzezinski’s
group model. Our theory, which is based on kinetic equations
for coupled electron-proton transfer, permits us to express both
the rate constant and amplitude of the slow kinetic phase in
terms of a common set of parameters of the model and to
determine all the parameters from experimental data. The rates
of protonation and deprotonation of the group L in two redox
states ofa3, i.e.,kon

red, koff
red, kon

ox, andkoff
ox, obtained with this theory

are shown in Table 2. In addition, the theory predicts that the
amplitude of the fast phase must also depend on pH. The lack
of such a dependence in experiment is discussed. These results
are obtained under condition that L′ is in fast protonic
equilibrium with bulk solution. The condition for maintaining
this equilibrium in the slow kinetic phase is derived. An
indication of a breakdown of the equilibrium is obtained from
experimental data, and the rate constant for protonation of L′
from bulk solution is estimated. When the proton exchange
between L′ and bulk solution is slower than between L′ and L,
the slow kinetics is biphasic, with two rate constants being
linearly dependent upon proton concentration.

2. Proton Transfer at a Given Hemea3 Redox State

Kinetic equations for proton transfer in the scheme of eq 1.1
depend on the model of the proton channel. We will assume
that protonation and deprotonation of L occur via exchange
reactions with L′. On the other hand, L′ is treated as being
immersed directly into bulk solution. The reaction scheme is

Proton exchange between L′ and bulk solution, eq 2.2, is assumed
to be very fast, so that equilibrium is maintained with the
equilibrium constant

wherek′offis the monomolecular rate constant of deprotonation
and κ′on is the bimolecular rate constant of protonation of L′.
The fraction of the protonated groups L′ is

The assumption of fast L′-BS equilibrium will be discussed
in sections 4 and 5.

The kinetic equation for reaction 2.1 with the reduced heme
a3 has the form

where the “off” and “on” rate constants are multiplied by
fractions of deprotonated and protonated groups L′, respectively.
The “on/off” rates depend on the redox state of hemea3. At
equilibrium

where pKred is pKa of L in the reduced state ofa3. The second
relation is a consequence of thermodynamics that requires that
equilibrium between L and bulk solution be independent of any
intermediate L′. Then the ratio of the “on” and “off” rates is
expressed in terms of the difference between pK's of L and L′,26

The fraction of protonated groups L at the reduced state of heme
a3,

is the same as if L were immersed directly into bulk solution.
Equations 2.5-2.8 are written similarly for the oxidized state
a3

3+.

3. Kinetic Equations for Coupled Electron-Proton
Transfer

In Figure 1 the numbering of states is indicated. The scheme
of Figure 1 does not account for electron flow from hemea to
the CuA center since the electron backflow observed in flow-
flash experiments on the CO-inhibited CcO does not exceed
10%.20

TABLE 1: Experimental and Theoretical Data from Refs 19-21

kon - koff
a (s-1) koff (s-1) ∆GLH+

0 (meV) pHmax (∆Pms)max pK′ b pKred
c pKox

c

bovine heart 1740( 120d 210( 80d +42 9.4 0.21 7.7( 0.2d 9.7 8.5
Rhodobacter sphaeroides 2000e e150e +10 9.7 0.19 8.7 10.3 9.1

a This difference is designated askon in refs 19-21. b Calculated by fitting the observed pH dependence ofkobs with eq 3.27 assuming fast
equilibrium between L′ and bulk solution.c Calculated by fitting the observed pH dependence of the amplitude of the ms phase with an equation
based on apparent redox potentials of hemea3 in different protonation states of group L (see Discussion).d Experimental errors.19 e No experimental
errors are indicated, and only the upper limit forkoff is estimated.20

TABLE 2: Parameters Calculated in the Present Work

bovine heart Rhodobacter sphaeroides

pKred 9.7 10.1
pKox 8.4 9.0
pK′ a 8.2 8.2
∆Ea3,

b meV 78 62
k12 ) kon

red, s-1 7660( 1590c 8940( 2070d

k21 ) koff
red, s-1 200( 90c 120( 30d

k34 ) kon
ox, s-1 610( 260c 1250( 270d

k43 ) koff
ox, s-1 360( 230c 190( 40d

a Calculated from the on/off rate ratio, eq 3.30.b The interaction
energy of the L group with the hemea3 iron; see eq 3.11.c Uncertainties
include experimental errors and the scatter of rate values, eq 4.5,
introduced by our assumption of eq 4.2.d No experimental errors are
included. The scatter of values is due to the assumption of eq 4.2.

LH+...L′ h L...H+L′ (2.1)

L′H+ h L′ + H+ (2.2)

K′ )
k′off

κ′on
≡ 10-pK′ (2.3)

R′ ≡ [L ′H+]

[L ′H+] + [L ′]
) 1

1 + 10pH-pK′ (2.4)

d
dt

[a3
2+LH+] ) -(1 - R′)koff

red[a3
2+LH+] +

R′kon
red[a3

2+L] (2.5)

[a3
2+L]

[a3
2+LH+]

)
(1 - R′)koff

red

R′kon
red

≡ 10pH-pKred (2.6)

koff
red

kon
red

) 10pK′-pKred (2.7)

Rred ) 1

1 + 10pH-pKred
(2.8)
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The kinetic equations are written for the relative populations,

whereN is the total concentration of the active enzyme-CO
complexes. For brevity, proton-transfer rate constants at a given
redox state are denoted as

Electron-transfer rate constants at a given protonation state are
k13, k31, k24, and k42. Using eq 2.5, we obtain the kinetic
equations in the form

The electron-transfer rate constants obey the following ther-
modynamic relations:

whereEa is the reduction potential of hemea andEa3LH+ and
Ea3L are the redox potentials of hemea3 for protonated and
deprotonated states of group L, respectively. The change in the
reduction potential of hemea3 upon protonation of L is
expressed in terms of the change in pKa of L,20

The proton-transfer rate constants obey the relations which stem
from eq 2.7,

From eqs 3.7-3.14 we obtain the relations between the
equilibrium constants,

Initially, CO is bound to the binuclear center, so that hemea3

is fixed at its reduced state,a3
2+, whereas hemea is in the

oxidized state,a3+. At times t < 0, no electron transfer occurs
and proton equilibrium is established. It is assumed that the
presence of CO does not affect pKa of L due to a large separation
(5-10 Å, as estimated in ref 21). Then, the initial conditions at
t ) 0 are

where, for brevity,R stands forRred in eq 2.8, and eqs 2.4 and
3.13 were used.

After CO is flashed out, the 1T 3 and 2T 4 electron-transfer
channels become open. They govern the fast (µs) phase of the
observed kinetics of hemea reduction. The difference in the
electron and proton-transfer rate constants is about 3 orders of
magnitude. Therefore, we can neglect protonic transitions in
the fast phase and solve eqs 3.3-3.6 with the initial conditions
(3.16) and (3.17). After completion of the fast phase and before
beginning the slow phase, at a momentt1 such thatk12

-1 . t1
. k13

-1, we obtain the following populations:

The reduction degree of hemea equals to the population of the
a3

3+ state,

The change of the degree of the hemea3 oxidation during the
µs phase, i.e., the observed amplitude of the fast kinetic phase,
is

At t > t1 the slow (ms) phase develops. The relevant quantities
to describe the slow kinetics are populations of the deprotonated
and protonated states,PL ) P1 + P3 and PLH+ ) P2 + P4,
respectively. Using the relations established in the fast phase,
P3 ) K13P1 andP4 ) K24P2, which are approximately obeyed
in the slow phase as well, we obtain from the sum of eqs 3.3
and 3.5

P1 )
[a3

2+L]

N
P2 )

[a3
2+LH+]

N
P3 )

[a3
3+L]

N

P4 )
[a3

3+LH+]

N

P1 + P2 + P3 + P4 ) 1 (3.1)

k12 ) kon
red k21 ) koff

red k34 ) kon
ox k43 ) koff

ox

(3.2)

Ṗ1 ) -(R′k12 + k13)P1 + (1 - R′)k21P2 + k31P3 (3.3)

Ṗ2 ) R′k12P1 - [(1 - R′)k21 + k24]P2 + k42P4 (3.4)

Ṗ3 ) k13P1 - (k31 + R′k34)P3 + (1 - R′)k43P4 (3.5)

Ṗ4 ) k24P2 + R′k34P3 - [k42 + (1 - R′)k43]P4 (3.6)

K13≡ k13

k31
) exp(-

∆GL
0

kBT ) (3.7)

∆GL
0 ) Ea3L

- Ea (3.8)

K24≡ k24

k42
) exp(-

∆GLH+
0

kBT ) (3.9)

∆G LH+
0 ) Ea3LH+ - Ea (3.10)

∆Ea3
≡ Ea3LH+ - Ea3L

) kBT ln(10)∆pK (3.11)

∆pK ) pKred - pKox (3.12)

K12≡ k12

k21
) 10pKred-pK′ (3.13)

K34 ≡ k34

k43
) 10pKox-pK′ (3.14)

K13

K24
)

K12

K34
) 10∆pK (3.15)

P1
(0) ) 1 - R′

1 - R′ + R′K12
) 1 - R P3

(0) ) 0

(3.16)

P2
(0) )

R′K12

1 - R′ + R′K12
) R P4

(0) ) 0 (3.17)

P1
(1) ) 1 - R

1 + K13
(3.18)

P2
(1) ) R

1 + K24
(3.19)

P3
(1) )

(1 - R)K13

1 + K13
(3.20)

P4
(1) )

RK24

1 + K24
(3.21)

P(1)(a3
3+) ) P3

(1) + P4
(1) (3.22)

∆Pµs ) P(1)(a3
3+) - P(0)(a3

3+) )
(1 - R)K13

1 + K13
+

RK24

1 + K24
(3.23)
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where eqs 3.13-3.15 were used. The populations are normalized
according to eq 3.1,PL + PLH+ ) 1. The observed slow decay
rate constant is

Thus, eq 3.24 predicts a single-exponential decay in the ms
phase with the rate 3.27. After completion of the slow decay,
at a momentt2 . kobs

-1, the populations of the reduced hemea3

states are

These populations are in fact independent of the intermediate
group L′. To show this explicitly, we express the ratio of the
“on” and “off” rates according to eqs 3.25 and 3.26 as

Then, eqs 3.28 and 3.29 are rewritten in the form

independent of L′. It is worthwhile to note that in general the
state-to-state rate constantsk21 and k43 cannot be expressed
individually in terms of the measured “on” and “off” rates since
the on/off ratio (3.30) is independent of the state-to-state rates.
Yet, these constants can be reasonably estimated from experi-
mental data (see section 4).

The degree of hemea reduction at momentt2 is equal to the
population of the oxidized hemea3 states,

The same quantity at momentt1 is given by eqs 3.20-3.22,

The change of the degree of the hemea3 oxidation during the

ms phase, i.e., the observed amplitude of the slow kinetic phase,
is

Equation 3.35 predicts that the slow phase disappears when
electron transfer is decoupled from proton transfer. In this case
∆pK ) 0 and the electron-transfer rate constants are independent
of the protonation state of L, i.e.,K13 ) K24 andê ) 1. The pH
dependence of∆Pms is explicitly governed byR. The amplitude
of the slow phase disappears in both low and high pH limits
since L remains fully protonated or deprotonated in the course
of experiment. The maximum occurs at

We note that the amplitude of the fast phase given by eq 3.23
also depends on pH, but in a different manner. Since∆pK > 0
and Ea3LH+ > Ea > Ea3L,20 one hasK13 > 1 > K24,and ∆Pµs

increases with increasing pH.

4. Results

Here, we will calculate the parameters of the model and
compare the present theory with experimental and theoretical
results of refs 19-21. Experimental values ofkon, koff, ∆GLH+

0 ,
pHmax, and (∆Pms)max for CcO from bovine heart andRhodo-
bacter sphaeroidesare shown in Table 1. Our theoretical results
are summarized in Table 2 and discussed below in this section.

The rate ratiokon/koff, the equilibrium constantK24 at T )
295 K, andê are directly calculated using the data of Table 1
and eqs 3.9 and 3.37. ThenK12, K13, ∆pK, and∆Ea3 are found
from eqs 3.30, 3.31, and 3.11. Further, pKred and pKox are
calculated by eqs 3.36 and 3.12. Finally, pK′ is found from eq
3.13. The calculated parameters for bovine heart enzyme are
as follows (the parameters for bacterial enzyme are given in
parentheses):kon/koff ) 9.3 (14.3),K24 ) 0.19 (0.67),ê ) 0.25
(0.19),K12 ) 37 (75),K13 ) 3.8 (7.8),∆pK ) 1.3 (1.1). The
values of pK's and∆Ea3 are shown in Table 2.

The pH dependence of the amplitude of the slow phase in
CcO from bovine heart calculated by eq 3.35 with the above
parameters is given in Figure 2 along with the experimental
data and the theoretical curve from Figure 3B of ref 21.

The present theory predicts a pH dependence of the degree
of hemea3 oxidation in the fast phase as well. Indeed, proton
equilibration occurs prior to the flash, resulting in pH-dependent
initial populations of the protonated and deprotonated states
which thereafter decay with different electron-transfer rates. This
fact is described by our eqs 3.16 and 3.17. In ref 20 the second
term of eq 16 also represents the pH-dependent∆Pµs. In our
notations it reads

The amplitude of the fast phase calculated by eqs 3.23 and 4.1
is shown in Figure 3.

Next we will estimate the rate constants (3.2) for protonation
and deprotonation of group L in the reduced and oxidized states
of hemea3. These four state-to-state constants are not measured

ṖL ) -R′konPL + (1 - R′)koffPLH+ (3.24)

kon )
k12 + k34K13

1 + K13
)

K12(k21 + k43K24)

1 + K13
(3.25)

koff )
k21 + k43K24

1 + K24
(3.26)

kobs) R′kon + (1 - R′)koff (3.27)

P1
(2) )

(1 - R′)koff

kobs(1 + K13)
(3.28)

P2
(2) )

R′kon

kobs(1 + K24)
(3.29)

kon

koff
) êK12 (3.30)

ê )
1 - K24

1 + K13
)

1 + K24

1 + K2410∆pK
(3.31)

P1
(2) ) 1 - R

(1 + K13)(1 - R + Rê)

P2
(2) ) R

(1 + K13)(1 - R + Rê)
(3.32)

P(2)(a3
3+) ) 1 - P1

(2) - P2
(2) )

K13

1 + K13
-

(1 - ê)R
(1 + K13)(1 - R + Rê)

(3.33)

P(1)(a3
3+) )

K13

1 + K13
- 1 - ê

ê
R

1 + K13
(3.34)

∆Pms ) P(2)(a3
3+) - P(1)(a3

3+) )
(1 - ê)2R(1 - R)

(1 + K24)(1 - R + Rê)
(3.35)

pHmax ) pKred + 0.5 logê (3.36)

(∆Pms)max )
(1 - xê)2

1 + K24
(3.37)

∆Pµs ) 1

1 + K24
-110(R-1)∆pK

(4.1)
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individually. Rather, only two average constantskon and koff,
eqs 3.25 and 3.26, representing the state-to-state constants
weighted with equilibrium constants for electron-transfer reac-
tions are obtained in experiment. With equilibrium constants
K12 andK34, eqs 3.13 and 3.14, we have only three independent
equations to find the above four unknowns. Yet, we can get
reasonable estimates by assuming that deprotonation is faster
and protonation is slower in the oxidized state than in the
reduced state of hemea3. This is illustrated by the energy
diagram of Figure 4 where∆Ea3

† and ∆Ea3 are energy incre-
ments of the transition state and the protonated state of L,
respectively, due to electrostatic repulsion between proton and
heme iron ion, which is stronger in the oxidized state of the
heme. One has∆Ea3 > ∆Ea3

† since the proton is closer to the
heme iron in the LH+ state than in the transition state. Further,
if we assume that the distance between the position of the proton
in the LH+ state and that in the transition state (L...H+)† is 1-2
Å, then from Figure 6 of ref 21 we can estimate that the decrease
of the electrostatic energy when the proton moves from L to
the transition state does not exceed 0.4 pK units ≈ 24 meV.
Hence, we obtain the following estimate,

Using ∆Ea3 from Table 2, we obtain the values of∆Ea3

† ) 66
( 12 meV for bovine enzyme and 50( 12 meV for bacterial
enzyme. From Figure 4 one can see that the rate constants obey
the relation

Using inequality (4.2), we obtain the following restriction onto
the rate constants,

This additional condition helps us find all four constants. From
eqs 3.26 and 4.4 we obtain

Then,k12 andk34 are calculated from eqs 3.13, 3.14, and 3.30,
which are rewritten as

For bovine heart enzyme, usingkoff from Table 1 andK24

calculated at the beginning of this section, we obtain 105 s-1

< k21 < 290 s-1 or k21 ) 200( 90 s-1. The uncertainty includes
both the scatter of values, eq 4.5, owing to our assumed scatter
in ∆Ea3

† values, eq 4.2, and the experimental errors in the
measured values ofkon and koff. For bacterial enzyme no
experimental uncertainty was indicated in ref 20; therefore we
treatedkon and koff of Table 1 as exact. The calculated rate
constants are given in Table 2.

Finally, we studied the slow kinetics in the case where no
L′-BS equilibrium is established. Then, all four protonation
states of L and L′ have to be considered according to the reaction
scheme in eqs 2.1 and 2.2. The kinetics depends on two pairs
of rate constants, i.e.,k′off andκ′on governing proton exchange
between L′ and bulk solution, and the constantskon andkoff given
by eqs 3.25 and 3.26, which govern the LT L′ proton exchange.

Figure 2. Amplitude of the slow phase in CcO from bovine heart.
Solid line, eq 3.35 with parameters from Table 2. Squares and dots,
experimental data from ref 21. Dashed line, theoretical curve from
ref 21.

Figure 3. Amplitude of the fast phase in CcO from bovine heart. Solid
line, eq 3.23 with parameters from Table 2. Dashed line, eq 4.1 with
parameters from Table 1.

∆Ea3
- 24 meV< ∆Ea3

† < ∆Ea3
(4.2)

Figure 4. Energy diagram for proton movement in the reduced (solid
lines) and oxidized (dashed lines) states of hemea3.

k43

k21
) exp(∆Ea3

- ∆Ea3

†

kBT ) (4.3)

1 <
k43

k21
< 100.4 ) 2.5 (4.4)

1 + K24

1 + 2.5K24
<

k21

koff
< 1 (4.5)

k43

koff
) 1 + 1

K24
(1 -

k21

koff
)

k12 )
kon

ê
k21

koff

k34 )
kon

ê
k43

koff
10- ∆pK
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By solving the secular equation we calculated three rate
constants for bovine heart enzyme shown by full lines in Figure
5.We found that at high combination rate,κ′on g 1012 M-1 s-1,
two higher rates represent the kinetics of fast L′-BS equilibra-
tion, whereas the lowest rate relates to the slow kinetics of the
L′-L proton exchange (not shown). The slow kinetics is
monophasic and its rate constant shows a sigmoidal pH
dependence, as described by eq 3.27. On a limited pH interval,
e.g., pH 8-10, this dependence may appear as a linear one with
the slope at the middle point of

since kon . koff (see Table 1). In the opposite limit of low
combination rates,κ′on e 3 × 1011 M-1 s-1, the slow kinetics is
biphasic and two rates are linearly dependent on the proton
concentration, with d logkobs/dpH ) -1 at pH < pK′ (not
shown). Two patterns of nonequilibrium behavior are shown
in Figure 5, where points are experimental data from Figure
3A of ref 21, and dashed and dotted lines are calculated by eq
3.27 with pK′ ) 8.2 and 7.7, respectively. The value of pK′ )
8.2 was calculated by us from the rate data (see Table 2),
whereas pK′ ) 7.7 was suggested in ref 21 as the best fit of eq

3.27 to the experimental data assuming full L′-BS equilibrium
(see Table 1). If this discrepancy between the two values of
pK′ is significant, it can be explained in the present theory by
a deviation from the full L′-BS equilibrium in the course of
the slow kinetic phase, as shown in Figure 5A forκ′on ) 5 ×
1011 M-1 s-1. The slow rate (the bottom full line) is smaller,
and it fits experimental data better than the rate under full L′-
BS equilibrium (dashed line). Whenκ′on is further decreased
below 3× 1011 M-1 s-1, the L′-BS equilibrium does not exist
anymore, as illustrated in Figure 5B forκ′on ) 5 × 1010 M-1

s-1, which is close to the diffusion-controlled limit of (2-4) ×
1010 M-1 s-1.27 The kinetics is biphasic and logarithm of the
slower rate shows a linear dependence upon pH at pH 7-9. It
strongly deviates from the experimental data, and its pH
dependence shows a slope of-1 characteristic of the diffusion-
controlled protonation kinetics.

5. Discussion

Equation 3.27 for the rate constant of the slow phase rewritten
in the form

is similar to that proposed in refs 19-21 wherekon - koff in
the first term is replaced withkon. It predicts the same pH
dependence, with saturation at both low and high pH. However,
the meaning of the parameterskon and koff is different. Apart
from a numerical change due to the above replacement, our
eqs 3.25 and 3.26 explicitly take into account the dependence
of the proton-transfer rates on the redox state of hemea3. The
present theory enabled us to estimate these redox-dependent
rates using the experimental data. The results are shown in Table
2. It is worthwhile to note that the measured rate of proton
transfer along the gramicidin channel across biomembranes is
6.5 × 104 s-1, and that the same mechanism is assumed to
operate in other proton-transporting proteins including CcO.28

Our result for protonation of L (proton transfer in forward
direction from bulk to the active site), (8- 9) × 103 s-1,
compares well with the above-cited rate.

We also emphasize that eqs 3.27 and 5.1 are only valid on
condition of fast equilibrium between L′ and bulk solution, and
this condition was specified quantitatively. We estimated that
it is fulfilled when κ′on > 1012 M-1 s-1, where κ′on is the
bimolecular rate constant for protonation of the proton channel
from bulk solution, and it is broken down whenκ′on < 3 × 1011

M-1 s-1. From comparison with experiment, which shows some
deviation from the full equilibrium, we estimatedκ′on ) 5 ×
1011 M-1 s-1. This value is significantly higher than the
determined rate constants for proton binding to macromolecular
structures, (2-6) × 1010 M-1 s-1,28 which are in the range of
diffusion-controlled reactions. Yet, proton binding can be
accelerated due to proton-collecting antennas28 and fast proton
translocation via networks of hydrogen bonds.

We can formulate a criterion for the fast equilibrium and for
the lack thereof based on the pH dependence of logkobs. This
dependence is linear for low combination rateκ′on(no equilib-
rium) with the slope of-1 at pH< pK′ since in this casekobs

≈ κ′on[H
+]. On the other hand, in the case of fast equilibrium

(high combination rate) the pH dependence is sigmoidal, but it
may appear as linear in a limited interval of pH around the
midpoint, with twice as low the slope of-0.5. For instance, in
the stopped-flow experiment by Verkhovsky et al.25 on the
reaction of pulsed oxidized CcO with reduced ruthenium
hexaammine a biphasic behavior was observed with linear

Figure 5. pH-dependent rate constants for proton movement in bovine
heart enzyme. Panel A, high combination rateκ′on ) 5 × 1011 M-1 s-1.
Panel B, low combination rateκ′on ) 5 × 1010 M-1 s-1. Full lines,
three roots of the secular equation for the reaction scheme of eqs 2.1
and 2.2. Dashed line, eq 3.27 with pK′ ) 8.2. Dotted line, eq 3.27
with pK′ ) 7.7. Squares and circles, experimental data from Figure
3A of ref 21.

d logkobs/dpH ) - 1
2(kon - koff

kon + koff
) ≈ -0.5

kobs) R′(kon - koff) + koff (5.1)
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dependence of two rates upon pH in the range of pH 7-9. The
slope of both graphs is close to-0.5, which testifies the fast
L′-BS equilibrium, whereas the biphasicity originates from
other reasons than the lack of L′-BS equilibrium.

Next we discuss the amplitudes of the kinetic phases. We
note that the equations for the amplitudes are independent of
the actual kinetics, i.e., whether L′ is or is not in fast equilibrium
with solution, since the amplitudes depend on equilibrium or
quasiequilibrium states of the system. Our eq 3.35 for the
amplitude of the slow phase is essentially different from eq 16
of ref 20, and the same is true for the amplitude of the fast
phase. For example, the amplitude of the fast phase is a linear
function ofR in eq 3.23, whereas it is an exponential function
in eq 4.1. This is because A¨ delroth et al. considered electron-
transfer equilibrium between two redox states with apparent
reduction potentials whereas we took into account individual
contributions of all four participating states. As a result, our eq
3.35 depends on the equilibrium constantsK13 and K24 for
individual electron transfers with deprotonated and protonated
L group, respectively, rather than on the averaged equilibrium
constants derived from the apparent potentials. The other
important feature is that the theory of ref 20 does not provide
any relation between the amplitude and the rate of the slow
phase, while both quantities describe one and the same process.
In contrast, the present theory shows this relation explicitly since
eq 3.30 for the on/off rate ratio and eq 3.35 for the amplitude
depend on the common parameterê.

Equation 3.30 was used to calculate the pK′ values from the
rate data (Table 2) and compare them with the results of refs
19 and 20 obtained from a fit to the observed rate assuming
fast equilibrium between L′ and solution (Table 1). The
difference between two values can be explained by a deviation
from fast equilibrium, as explained above. Yet the difference
of 0.5 in the pK′ values is not very large as compared to the
uncertainty involved, to make a definite conclusion. The second
result of this analysis is our finding that the equilibrium is
definitely not maintained at a combination rate of slower than
3 × 1011 M-1 s-1. Since the equilibrium, or nearly equilibrium,
does exist in the flow-flash experiment under study, we can
conclude that the combination rate is significantly higher,
approaching 1012 M-1 s-1.

It is seen that both theories give nearly identical pH
dependencies of the amplitudes of the slow and fast phases.
Similar results are obtained for bacterial CcO (not shown). Our
values for pK's of L in Table 2 are nearly the same as those
obtained in refs 20 and 21 despite the fact that our equations
are analytically very different from those of ref 20. However,
this difference is expected to manifest numerically at higher
∆pK, e.g., like those found in ref 29. Higher∆pK are expected
if a water molecule bound to the reduced binuclear center plays
a role of the L group in its protonated state.19

The present model accounts for a single protonatable group
L in a vicinity of the binuclear center. In fact, there is a second
proton channel, the D-channel, redox-linked to hemea, and a
channel for outgoing protons, as well as several protonatable
groups at each redox site (see, e.g., refs 6-10, 22, and 29-32
and references therein). Papa et al.29 identified two groups
interacting with hemea3, one interacting with hemea, and one
with CuB. The pK's of the groups near hemea3 are equal to 7
in the oxidized state andg12 in the reduced state of hemea3,
which are far from the values found in ref 20 and in the present
work. One of these groups might be a water molecule mentioned
above. With a high value of pKred this L group will always be
protonated when hemea3 is reduced, which will result in a pH-

independent amplitude of the fast phase in accordance with the
experiment in refs 19-22. However, our theory predicts that
in this case the amplitude of the slow phase will be monotoni-
cally increasing with pH whereas the experiment shows a
maximum (see Figure 2). The experimentally observed inde-
pendence of the fast phase upon pH may indicate an inhomo-
geneous decay. For instance, a fraction of the active enzyme-
CO complexes may have a water molecule near the binuclear
center that could provide a large pH-independent contribution
to the fast kinetic phase whereas another population with no
water molecule at the binuclear center would contribute to the
descending branch of the amplitude of the slow phase. Another
possibility is that a significant fraction of enzyme molecules
may have had their proton channels impaired, so that their L’s
are decoupled from the bulk solution and always remain in a
given state of protonation. Then, the fast decay is mostly due
to this population of enzymes, whereas the contribution of
the “normal” enzymes is seen only in the slow phase. On the
other hand, we note that the appearance of the maximum in
the amplitude of the slow phase does not seem to be very
convincing, especially for bacterial enzyme. If the maximum
is an artifact, a water molecule will be a good candidate for the
L group responsible for the observed pH dependence of the slow
phase.

A few comments are also due to the following features of
the present model.

(i) It is assumed that CO locks hemea3 in its reduced state,
while there are data indicating thata3

2+-CO complex can be
oxidized by ferricytochrome.33 This means that in the course
of preparation of the mixed-valence enzyme-CO complex a
fraction of the complexes is destroyed at the stage of oxidation.
The total concentration of the survived complexes showing up
in a flash-photolysis experiment depends on experimental
conditions, in particular on pH. This circumstance does not
influence our equations because all kinetic curves are normalized
to the total concentration of the available complexes.

(ii) In addition to the centers represented in Figure 1, there
are two copper centers that are ignored in the present model.
This is justified because CuB always remains in its reduced state
and the electron flow to CuA does not exceed 10% in these
experiments.20

(iii) The pK of the L group is assumed to be unaffected by
CO unbinding froma3. If L is located far away froma3, so that
∆pK due to a change in the redox state ofa3 is small, then this
is justified since CO does not move a long way from the
binuclear center when flashed out of it. Instead, CO resides in
a vicinity of the center because its rebinding starts very shortly
after the coupled electron and proton transfer is completed.
However, the pK of L can be affected when L is a ligand toa3,
as discussed above in this section.

(iv) The present model does not exclude the possibility that
the event called here an “electron transfer” is in fact concerted
electron plus proton transfer in which both electron and proton
are translocated rapidly with the same rate. Our equations apply
to this case as well.

(v) The redox cooperativity is usually an important factor
affecting the redox potentials of the participating centers.
However, in the experiments under study, only a single electron
is translocated between the centers whereas the second one
resides permanently on CuB. Therefore, there is no change in
the redox potentials in the course of the back electron flow from
the binuclear center.

Acknowledgment. We appreciate helpful discussions with
P. Brzezinski and M. Verkhovsky. This work has been supported

Electron and Proton Transfer in Cytochromec Oxidase J. Phys. Chem. B, Vol. 105, No. 24, 20015795



by research grants from the National Institutes of Health
(GM54052-02), NIH Fogarty International Center (1 R03
TW00954-01), INTAS (99-00281), and the Russian Founda-
tion for Basic Research (98-03-33155,98-04-48955). A.A.S.
acknowledges support by the Sloan and Beckman Foundations.

References and Notes

(1) Wikström, M. Nature1977, 266, 271.
(2) Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H.Nature 1995,

376, 660.
(3) Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamagu-

chi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S.
Science1995, 269, 1069.

(4) Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamagu-
chi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S.
Science1996, 272, 1136.

(5) Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.;
Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima,
T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T.Science1998, 280, 1723.

(6) Fergusson-Miller, S.; Babcock, G. T.Chem. ReV. 1996, 96, 2889.
(7) Rich, P. InProtein Electron Transfer; Bendall, D. S., Ed.; BIOS

Scientific Publishers Ltd.: Oxford, U.K., 1996; pp 217-248.
(8) Rich, P.; Moody, A. J. InBioelectrochemistry: Principles and

Practice; Graber, P., Milazzo, G., Eds.; Birkhauser Verlag AG: Basel, 1997;
pp 419-456.

(9) Papa, S., Guerrieri, F., Tager, J. M., Eds.Frontiers of Cellular
Bioenergetics: Molecular Biology, Biochemistry, and Physiopathology;
Plenum Press: New York, 1998.

(10) Kannt, A.; Lancaster, C. R. D.; Michel, H.Biophys. J.1998, 74,
708.

(11) Lambry, J.-C.; Vos, M. H.; Martin, J.-L.J. Phys. Chem. A1999,
103, 10132.

(12) Moore, D. B.; Martı´nez, T. J.J. Phys. Chem. A2000, 104, 2367,
2525.

(13) Nagle, J. F.; Morowitz, H. J.Proc. Natl. Acad. Sci. U.S.A.1978,
75, 298.

(14) Gutman, M.; Nachliel, E.Biochim. Biophys. Acta1990, 1015, 391.
(15) Pome`s, R.; Roux, B.Biophys. J.1997, 71, 19.
(16) Riistama, S.; Hammer, G.; Puustinen, A.; Dyer, B. R.; Woodruff,

W. H.; Wikström, M. FEBS Lett.1997,414, 275.
(17) Hofacker, I.; Schulten, K.Proteins Struct. Funct. Genet.1998, 30,

100.
(18) Medvedev, D. M.; Daizadeh, I.; Stuchebrukhov, A. A.J. Am. Chem.

Soc.2000, 122, 6571.
(19) Hallén, S.; Brzezinski, P.; Malmstro¨m, B. G. Biochemistry1994,

33, 1467.
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