УДК 582.26:001.891.57

МОДЕЛИРОВАНИЕ РАЗВИТИЯ ФИТОПЛАНКТОНА В РЫБИНСКОМ ВОДОХРАНИЛИЩЕ*

© 2015 г. Ю.С. Даценко, О.Н. Ерина, В.В. Пуклаков

ФГБОУ ВПО «Московский государственный университет имени М.В.Ломоносова», Москва

Ключевые слова: фитопланктон, математическое моделирование, Рыбинское водохранилище.

Ю.С. Даценко

О.Н. Ерина

В.В. Пуклаков

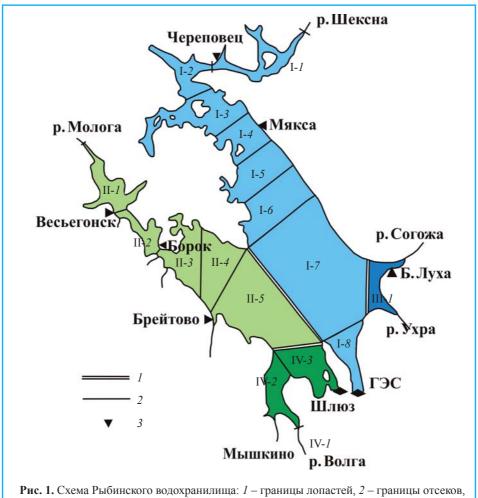
Представлена модель развития фитопланктона в водохранилище, включающая описание кинетики его взаимодействий в экосистеме и внутреннего водообмена водохранилища. Проведенные расчеты изменений биомассы синезеленых и диатомовых водорослей в Рыбинском водохранилище в вегетационный период показали их удовлетворительную сходимость с данными натурных наблюдений.

Введение

Наиболее важная проблема современной гидробиологии и экологии – создание теории функционирования экосистем, на основе которой может быть разработана теория экологического прогнозирования. При системном подходе водоем (водная экосистема) рассматривается как многоуровневая иерархическая система, в которой ведущая роль принадлежит фитопланктону, за счет фотосинтеза которого создается основной фонд органического вещества в водоемах. Вместе с аллохтонным органическим веществом фотосинтетическая продукция составляет материальную и энергетическую основу продукционного процесса в водоеме.

Водное хозяйство России № 1, 2015

^{*} Работа выполнена при финансовой поддержке РФФИ (Проект № 12-05-00176).

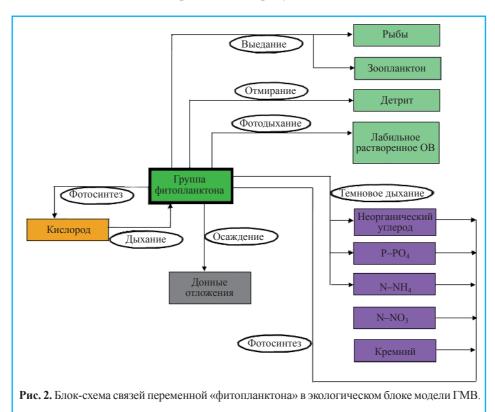

Помимо большого числа натурных исследований в области изучения фитопланктона в настоящее время накоплен немалый опыт математического моделирования, что позволяет использовать теоретические построения в практических целях. Изучение происходящих в экосистемах процессов с помощью математических методов позволяет прогнозировать состояние экосистем и рассматривать влияние на них внешних факторов, не используя дорогостоящие, а часто и невозможные полевые эксперименты. В математических моделях процессов функционирования экосистемы сложные структурные взаимосвязи в экосистеме воспроизводятся на фоне пространственно-временной изменчивости ее компонетов в зависимости от комплекса внешних воздействий. Подобные модели относятся к классу имитационных или портретных, разрабатываются на основе законов сохранения и превращения веществ, наиболее существенных переменных, факторов среды и внутриводоемных процессов и используют аппарат дифференциальных уравнений, формализующих современные представления об экосистемных процессах.

Теоретические основы этого направления моделирования в гидроэкологии заложены датским лимнологом С. Йоргенсеном [1], в России впервые задачи управления озерными системами на основе моделирования начал решать В.В. Меншуткин [2]. Имитационные экологические модели преследуют цель воспроизведения короткопериодной пространственно-временной изменчивости компонентов экосистемы и ее трофического состояния в целом или в отдельных частях экосистемы. Однако все они требуют специальной, индивидуальной настройки на водоем, к которому применяются, поскольку, во-первых, нужна детальная характеристика водоема, во-вторых, диапазон многочисленных эмпирических коэффициентов, использующихся в экологических блоках моделей, достаточно велик. Основная проблема при создании модели водной экосистемы для конкретного водоема состоит в подборе адекватных зависимостей и эмпирических коэффициентов для описания биологических и биохимических взаимодействий.

Математические модели процессов в экосистеме всегда содержат как минимум два относительно самостоятельных блока: гидрологический (гидродинамический), определяющий перенос и перемешивание пассивных субстанций в водоеме, и экологический, описывающий кинетику внутриводоемной трансформации неконсервативных переменных состояния экосистемы. Наиболее сбалансированы эти блоки в гидрологической модели водохранилищ (ГМВ), разработанной на кафедре гидрологии суши в МГУ [3]. Эта модель учитывает специфику водохранилищ при моделировании многометровых колебаний уровня и переноса воды и веществ в разных слоях водной толщи, поверхностные и донные водосборы и, кроме того, позволяет рассчитывать внутренний водообмен многолопастных, морфологически сложных водохранилищ, к которым относится Рыбинское водохранилище.

Материал и методика

Использованная для расчетов сезонной динамики фитопланктона Рыбинского водохранилища гидрологическая модель основана на одномерном алгоритме расчета вертикальной структуры водоема, последовательно примененном к выделенным отсекам, в виде которых схематизируется водохранилище. Морфологически сложное Рыбинское водохранилище представлено в модели в виде состыкованных между собой лопастей, представляющих затопленные долины реки и ее основных притоков. Каждая лопасть делится в продольном направлении на отсеки (рис. 1) с учетом ее морфометрических особенностей.


3 — водомерные посты.

Водное хозяйство России № 1, 2015

Описание внутриводоемных процессов базируется на балансовых уравнениях, отражающих неразрывность водной среды и закон сохранения вещества и энергии в каждом слое отсека при условии полного смешения за сутки втекающей воды с содержимым расчетного слоя. Горизонтальный водообмен между отсеками учитывается в виде стокового, дрейфового, плотностного и компенсационного течения. Ветровая циркуляция воды в водохранилища рассчитывается по включенному в модель алгоритму гидродинамического блока программного комплекса Института биологии внутренних вод Российской академии наук (ИБВВ РАН) [4]. Верификация модели, проведенная по данным синхронных гидрологических съемок Рыбинского водохранилища, показала высокую адекватность воспроизведения на модели основных характеристик гидрологического режима водохранилища [5].

Наиболее сложная переменная при моделировании процессов в экосистеме — биомасса фитопланктона. Примененная в модели блок-схема моделируемых связей фитопланктона представлена на рис. 2.

В алгоритме экологического блока модели фитопланктон рассматривается как единое сообщество, состояние которого характеризуется биомассой, а ее изменчивость определяется продукцией, выеданием зоопланкто-

ном, отмиранием и осаждением, что соответствует сложившемуся в гидробиологии продукционному направлению.

Параметризация экологических процессов проведена ранее для групп диатомовых и синезеленых водорослей при расчетах биомассы фитопланктона небольшого подмосковного Можайского водохранилища [6].

В модели ГМВ базовое уравнение для расчета биомассы фитопланктона имеет вид

$$\frac{\partial B_{\Phi}}{\partial t} = K_{p\Phi} \cdot B_{\Phi} - K_{\pi\Phi} \cdot B_{\Phi} - K_{B\Phi} \cdot B_{\Phi} - K_{c\Phi} \cdot B_{\Phi} - \frac{\omega_{\Phi}}{\Delta z} \cdot B_{\Phi} - K_{\Phi^3} \cdot Z \cdot PR \cdot \frac{B_{\Phi}}{\sum B}, \quad (1)$$

где B_{ϕ} – биомасса группы фитопланктона;

 $\sum B$ — концентрация имеющейся общей весовой пищи для зоопланктона в слое с учетом предпочтений, гС/м³;

 $K_{\rm p\phi}$ – скорость роста фитопланктона, сут $^{-1}$;

 $K_{\rm д\phi}^{\rm FT}$ – скорость дыхания фитопланктона, сут $^{-1}$;

 $K_{\rm B\phi}$ – скорость экскреции фитопланктона, сут $^{-1}$;

 $K_{c\phi}$ – скорость отмирания фитопланктона, сут⁻¹;

 $K_{\rm d3}^{-}$ – скорость выедания фитопланктона зоопланктоном;

Z – биомасса зоопланктона, Γ С/м³;

PR — фактор предпочтения данной группы фитопланктона в питании зоопланктона;

 ω_{φ} – скорость осаждения фитопланктона, м/сут;

 Δz – толщина слоев, м.

Составляющие этого уравнения баланса биомассы фитопланктона в слое рассчитываются следующим образом:

$$K_{\rm ph} = \gamma_{\rm pr} \gamma_{\rm cr} \lambda_{\rm min} K_{\rm phmax}, \tag{2}$$

где γ_{pr} – характеристика подъема кривой влияния температуры воды;

 $\gamma_{c\tau}$ – характеристика спада кривой влияния температуры воды;

 λ_{min} – множитель для лимитирующих факторов (минимум освещения, биогенного питания);

 $K_{\rm pomax}$ — максимальная скорость роста фитопланктона, сут $^{-1}$.

Характеристики кривой влияния температуры воды вычисляются с учетом критических значений температуры воды по формулам:

$$\gamma_{\text{pr}} = \frac{1}{T_2 - T_1} \operatorname{Ln} \frac{K_2 (1 - K_1)}{K_1 (1 - K_2)};$$

$$\gamma_{\text{cr}} = \frac{1}{T_4 - T_3} \operatorname{Ln} \frac{K_3 (1 - K_4)}{K_4 (1 - K_3)};$$
(3)

Водное хозяйство России № 1, 2015

где K_1 , K_2 , K_3 , K_4 – коэффициенты температурной кривой;

 T_1 — критическая температура, ниже которой процессы останавливаются, °C;

 T_2 – нижний оптимум температуры, °С;

 T_3 – верхний оптимум температуры, °C;

 T_4 – летальная температура для водорослей, °C.

Лимитирующая функция по световым условиям определялась по классической схеме, описанной, например [7], лимитирование по биогенному питанию — по уравнению Михаэлиса—Ментен. Потери биомассы при темновом дыхании (экскреции) и смертности оценивались произведением зависящих от температуры коэффициентов на параметры максимальных значений скорости этих процессов. Скорость экскреции определялась произведением максимальной экскреции на величину $(1-\lambda_I)$, где λ_I — световая лимитирующая функция.

Для подбора коэффициентов фитопланктонного блока использовали литературные материалы и выбирали средние значения коэффициентов, которые затем корректировали по результатам расчетов фитопланктона Можайского водохранилища. Принятые в расчетах значения коэффициентов представлены в табл. 1.

Таблица 1. Значения параметров экологического блока модели

Параметр	Значения для синезеленых водорослей	Значения для диатомовых водорослей
Оптимальная интенсивность солнечной радиации, Вт/м2	47,8	63,2
Константа полунасыщения (Михаэлиса-Ментен) для фосфора, мг/л	0,020	0,004
Константа полунасыщения (Михаэлиса-Ментен) для азота, мг/л	0,006	0,070
Константа полунасыщения (Михаэлиса-Ментен) для кремния, мг/л	_	0,5
Коэффициент температурной кривой K_1	0,1	0,3
Коэффициент температурной кривой K_2	0,98	0,98
Коэффициент температурной кривой K_3	0,98	0,98
Коэффициент температурной кривой K_4	0,1	0,3
Параметр температурной кривой T_1 , °C	10	0
Параметр температурной кривой T_2 , °C	19	8
Параметр температурной кривой T_3 , °С	25	12
Параметр температурной кривой T_4 , °C	35	17
Максимальная скорость роста фитопланктона, сут ⁻¹	1,3	1,7
Максимальная скорость дыхания фитопланктона, сут-1	0,14	0,14
Максимальная скорость экскреции фитопланктона, сут-1	0,05	0,04
Максимальная скорость отмирания фитопланктона, сут ⁻¹	0,07	0,01
Скорость осаждения фитопланктона, м/сут	0,14	0,14

Также как и расчеты внутреннего водообмена по гидрологической модели расчеты биомассы фитопланктона выполнены в экстремальные по водности годы — многоводный 1962 г. и маловодный 1964 г. Сбор материала для определения биомассы фитопланктона в рассматриваемые годы осуществлялся в экспедиционных рейсах ИБВВ РАН на шести станциях, расположенных в центральном (Главном) и Волжском плесах водохранилища с интервалом две недели. Для верификации результатов расчета выбирались отсеки водохранилища, соответствующие расположению этих шести стандартных станций съемок водохранилища. В соответствие с принятой схематизацией к ним относились отсеки 6, 7 и 8 первой лопасти, отсек 4 второй лопасти и отсеки 2 и 3 третьей лопасти — итого 6 станций. Пробы отбирали из верхнего метрового слоя, сливая их затем в равных количествах в одну интегральную. Анализ проб проводили путем прямого микроскопирования с учетом таксонометрической принадлежности водорослей, их линейным объемом и подсчетом числа клеток.

Поскольку данные наблюдений относятся к сливным пробам воды, т. е. представляют собой осредненные значения биомассы по всем станциям, то для сравнения расчетных и наблюдаемых величин проводилось осреднение результатов расчетов биомассы по всем отсекам с дискретностью две недели, именно на те даты, когда проводились съемки водохранилища.

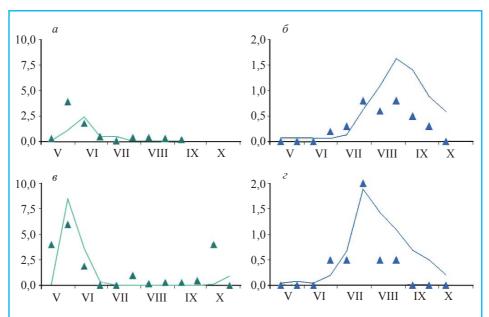
Результаты и их обсуждение

Результаты проведенного сравнения биомасс по диатомовым и синезеленым водорослям представлены на рис. 3.

В сезонной динамике фитопланктона Рыбинского водохранилища выделяют четыре стадии [8, 9]. Весенний подъем биомассы обусловлен развитием диатомовых водорослей, летний — диатомовыми и синезелеными. Между весенним и летним подъемами биомассы наблюдается летняя депрессия — «фаза чистой воды», которая прослеживается во многих стратифицированных мезотрофных и эвтрофных водоемах. Осенний пик выражен не всегда и обычно связан с обильной вегетацией диатомовых водорослей. Чаще осенью отмечается плавное снижение биомассы синезеленых водорослей. Максимальная биомасса водорослей обычно наблюдается весной и колеблется от 2 до 20 мг/л.

Отмеченные черты режима фитопланктона в водохранилище удовлетворительно воспроизводятся модельными расчетами за исключением осеннего развития диатомовых водорослей в 1962 г. Расчетные биомассы весеннего развития диатомовых и летнего — синезеленых как максимальные, так и средние оказались близки реально наблюдаемым. В качестве критерия адекватности модели использовали широко распространенный в экологическом моделировании критерий Тэйла [10].

Водное хозяйство России № 1, 2015


$$T = \frac{\sqrt{\sum_{i=1}^{n} (X_{\text{obs}} - X_{\text{sim}})^2}}{\sqrt{\sum_{i=1}^{n} X_{\text{obs}}^2} + \sqrt{\sum_{i=1}^{n} X_{\text{sim}}^2}},$$
 (4)

где $X_{
m obs}, X_{
m sim}$ – наблюдаемые и расчетные значения переменной;

n – количество измерений экспериментальных данных.

Из формулы видно, что T изменяется от 0 до 1 и равно 0 при полном совпадении модельных и наблюдаемых значений. Считается, что результаты моделирования удовлетворительны при T меньше 0,4; что наблюдается в большинстве представленных расчетов (табл. 2).

Удовлетворительное воспроизведение модельным расчетом изменчивости биомассы планктонных водорослей в безледный период года

Рис. 3. Наблюдаемые и рассчитанные значения биомассы (мг/л) диатомовых (a, s) и синезеленых (δ, ε) водорослей в Главном плесе Рыбинского водохранилища в 1962 (a, δ) и 1964 г. (s, ε) : треугольники – данные наблюдений, линии – рассчитанные значения.

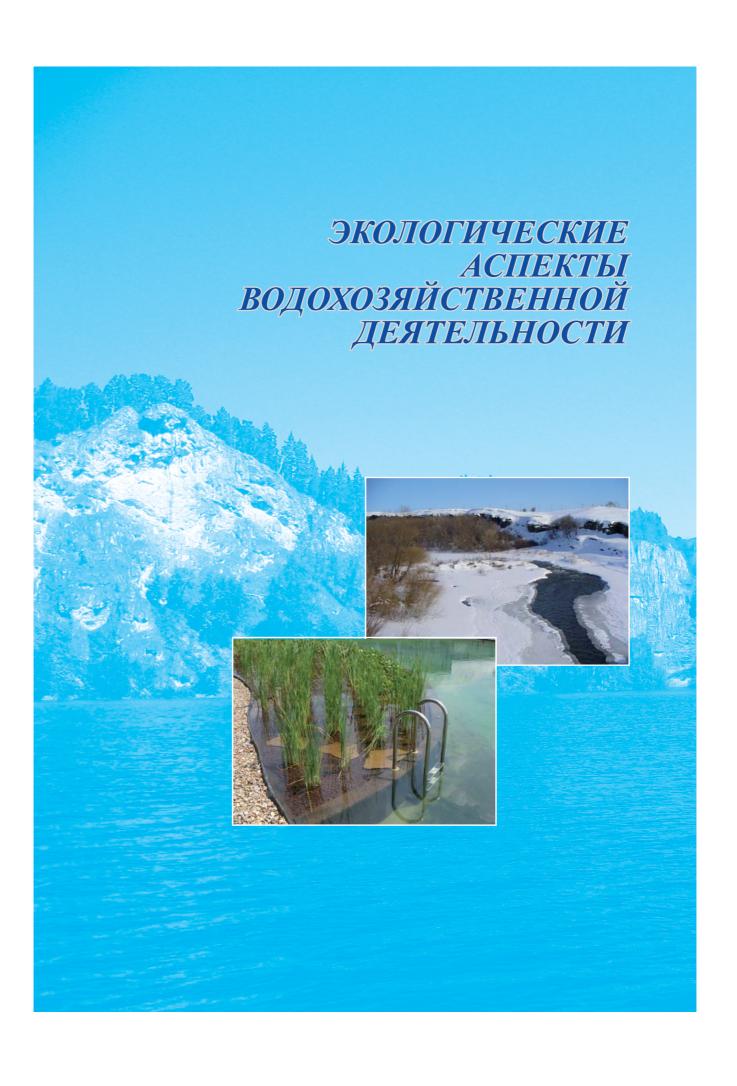
Таблица 2. Значения критерия Тэйла

Годы	Диатомовые	Синезеленые
1962	0,41	0,20
1964	0,36	0,39

указывает на то, что используемый расчетный алгоритм достаточно адекватен всему ансамблю внутриводоемных процессов формирования качества воды. Это открывает возможность сценарных расчетов одного из наиболее чувствительных к межгодовым и внутригодовым синоптическим колебаниями гидрологического, метеорологического и гидрохимического режима водохранилища показателя качества воды, в результате чего модель можно использовать для анализа откликов фитопланктонного сообщества на различные антропогенные и природные внешние воздействия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Йоргенсен С.Э. Управление озерными экосистемами. М.: Агропромиздат, 1985. 160 с.
- Меншуткин В.В. Математическое моделирование популяций и сообществ водных животных. Л.: Наука, 1971. 196 с.
- 3. *Пуклаков В.В.* Гидрологическая модель водохранилища: руководство для пользователей. М.: ГЕОС, 1999. 96 с.
- 4. *Поддубный С.А., Сухова Э.В.* Моделирование влияния гидродинамических и антропогенных факторов на распределение гидробионтов в водохранилищах. Рыбинск: Из-во ОАО «Рыбинский Дом печати», 2002. 120 с.
- 5. *Пуклаков В.В., Ершова М.Г., Эдельштейн К.К.* Синоптическая изменчивость термодинамического состояния водных масс в Рыбинском водохранилище // Метеорология и гидрология. 2013. № 1. С. 79–88.
- 6. Даценко Ю.С., Пуклаков В.В. Моделирование развития фитопланктона в Можайском водохранилище // Вестник МГУ. Сер. География. 2010. № 6. С. 41–47.
- 7. *Chapra S.C., Reckhow K.H.* Engineering Approaches for Lake Management. Boston: Butterworths, 1983. Vol. 1, 2. 492 p.
- 8. Рыбинское водохранилище и его жизнь / под ред. Б.С. Кузина. Л.: Наука, 1972. 364 с.
- 9. *Корнева Л.Г.* Фитопланктон Рыбинского водохранилища: состав, особенности распределения, последствия эвтрофирования // Современное состояние экосистемы Рыбинского водохранилища. СПб.: Гидрометеоиздат, 1993. С. 50–113.
- 10. Theil H. Applied economic forecasting. Amsterdam. 1971. 256 p.


Сведения об авторах:

Даценко Юрий Сергеевич, канд. геогр. наук, доцент, старший научный сотрудник, Географический факультет, ФГБОУ ВПО «Московский государственный университет имени М.В.Ломоносова», Географический факультет, 119991, ГСП-1, Москва, Ленинские горы, 1; e-mail: yuri0548@mail.ru

Ерина Оксана Николаевна, инженер, ФГБОУ ВПО «Московский государственный университет имени М.В.Ломоносова», Географический факультет, 119991, ГСП-1, г. Москва, Ленинские горы, 1; e-mail: tamiblack@yandex.ru

Пуклаков Валерий Владимирович, канд. геогр. наук, старший научный сотрудник, ФГБОУ ВПО «Московский государственный университет имени М.В.Ломоносова», Географический факультет, 119991, ГСП-1, Москва, Ленинские горы, 1; e-mail: puklakov@mail.ru

Водное хозяйство России № 1, 2015

