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Abstract: This chapter is devoted to the study of controllable proximity effects in super-

conductors (S), both in terms of fundamental aspects and applications. As a 

part of the work theoretical description was suggested for a number of struc-

tures with superconducting electrodes and multiple interlayers with new phys-

ics related to the proximity effect and nanoscale φ-junctions. They are Joseph-

son structures with the phase of the ground state φg, 0<φg<π. φ-junctions can 

be created on the basis of longitudinally oriented normal metal (N) and 

ferromagnetics (F) layers between superconducting electrodes. Under certain 

conditions, the amplitude of the first harmonic in the current-phase relation 

(CPR) is relatively small due to F-layer. The coupling across N-layer provides 

negative sign of the second harmonic. To derive a quantitative criteria for real-

ization of a φ-junction we have solved two-dimensional boundary-value prob-

lem in the frame of Usadel equations for overlap and ramp geometries of dif-

ferent structures with NF-bilayer. This chapter is focused on different geome-

tries of nanoscale φ-structures of the size much less than Josephson penetra-

tion depth λJ. At the same time φ-state cannot be realized in conventional SNS 

and SFS sandwiches. Proximity effect between N and F layer limits minimal 

possible size of φ-junction. In the case of smaller junctions, NF-bilayer be-

comes almost homogeneous, φ-state is prohibited and junction exists in 0- or 

π-state. The conditions for realization of φ-junctions in ramp-type S-NF-S, 

overlap-type SFN-FN-NFS and RTO-type SN-FN-NS geometries are dis-

cussed in the Chapter. It is shown that RTO-type SN-FN-NS geometry is most 

suitable for practical realization. It is also shown in this chapter, that the pa-

rameter range of φ-state existence can be sufficiently broadened. It allows to 

realize φ- Josephson junctions using up-to-date technology. By varying the 
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temperature, we can slightly shift the region of 0-π transition and and, conse-

quently, we can control the mentioned phase of the ground state. Furthermore, 

sensitivity of the ground state to an electron distribution function permits ap-

plications of φ-junctions as small-scale self-biasing single-photon detectors. 

Moreover these junctions are controllable and have degenerate ground states 

+φ and -φ, providing necessary condition for so-called “silent” quantum bits. 

Key words: Superconductivity, Magnetism, Josephson Junction, Current-phase Relation 

(CPR), Josephson Memory, φ- Junction. 

1. INTRODUCTION  

In recent years the development of superconducting (S) electronics 

is rapidly growing field [1]. Energy efficiency and high characteristic 

frequencies of supeconductive devices may potentially provide significant 

benefit compared to other proposals of future electronics circuits. The main 

direction of this field is the development of controllable superconducting 

devices and memory elements. The one of the possible ways to control 

properties of superconducting structures is the implementaion of 

ferromagnetic layers in Josephson junctions [2-12]. There are a lot of 

different proposals and concepts in this field. 

It took a long time before the first experimental observation of 

coupling even through single ferromagnet (F) layer [13]. This problem was 

solved with the help of soft magnetic CuNi alloys. Shortly after, the 

experiments provided the evidence of junctions with negative critical current 

(π-shift of the current-phase relation, CPR) through phase-sensitive 

experiments [14] and demonstrated temperature induced transition to this π-

state [15]. At the same time, other challenges appeared in the field. 
One of the main problems of supeconductive electronics is the 

creation of  -junction, the structure with nontrivial phase  in the ground 

state. Implementation of these structures in conventional schemes RSFQ-

logic (Rapid Single Flux Quantum) can reduce the size of the curcuits and 

increase their speed [16-18]. Another possibility is development of quantum 

bits using  -contacts. It would mean downsizing and decreased sensitivity 

to external noise [19-22]. However, the development of  -junction reveals 

the problem of miniaturization. Most of earlier proposals are addressed to 

complex structures in the long Josephson junction regime ( JW > ) [23-28]. 

The relation between supercurrent SI  across a heterostructure and its 

Josephson phase   plays an important role for various superconducting 

devices. In standard structures superconductor-insulator-superconductor 

(SIS) with tunnel type of conductivity, the CPR has the sinusoidal form 
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   sinsI A  . In SNS or SINIS junctions (N is for normal metall here) 

with metallic type of conductivity in the weak link area the decrease in the 

temperature T  increases the deviations from the  sin   form and  SI   

achieves its maximum at / 2     . In SIS junctions the amplitude B  

of the second harmonic in CPR,  sin 2 ,B   is the value of the second order 

of smallness (with respect to the probability of tunneling through the barrier) 

and is negligibly small for all T . In sandwiches with normal metall in the 

vicinity of critical temperature CT   CA Const T T   , but the second 

harmonic amplitude in CPR is also small here. At low temperatures A  and 

B  have comparable magnitudes, thus giving rise to qualitative modifications 

of CPR shape. 

Nota bene: in all discussed types of structures the ground state 

corresponds to phase 0  , since at    a junction is at nonequilibrium 

state. 

New opportunities open up in Josephson junctions involving 

ferromagnets as weak link materials. The so-called  -state in SFS 

Josephson junctions (with  -shift of the CPR) was predicted in 1970s and 

observed in experiments at the beginning of this century [29-32]. Contrary to 

SIS or SNS junctions, in SFS devices one can have to have the ground state 

g  . It was proven experimentally [33] that such  -junctions can be 

used as on-chip  -phase batteries for self-biasing in various quantum and 

classical circuits in order to decouple quantum circuits from environment or 

to replace conventional inductance and strongly reduce the size of an 

elementary cell [34]. 

But for some purposes (e.g. for fast memory cells) on-chip  -

batteries are even more attractive. The so-called  -junctions with Josephson 

phase g  , (0 )    in the ground zero-current state were predicted 

by Mints [35] for the case of randomly distributed alternating 0  and    

facets along grain boundaries in high cT  superconductors (e.g. cuprates) with 

d-wave symmetry of the order parameter. It can be shown that  -junctions 

can be realized on the base of 0  and    segments in an inhomogeneous 

structure SFS structure [36]. Depending on the weights of the segments the 

state with an “average” phase g  can be generated if the mismatch between 

the segments is relatively small, g     . Remarkable progress was 

recently achieved on implementation of  -junctions within competing 

concepts [37-42]. 
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In order to create a  -junction one need a Josephson structure with 

non-sinusoidal CPR. In the simplest case, this CPR is written as follows 

      2 ,SI Asin Bsin     (1.1) 

where the following amplitudes of the CPR harmonics, ,A  and, ,B  are 

needed  

 / 2, 0.B A B   (1.2) 

In SIS and SFS structures, the requirements (1.2) can not be met. In 

SFS junctions in the vicinity of 0  to   transition the amplitude of the first 

harmonic in CPR is close to zero, thus opening an opportunity for creating a 

   battery, if B  is negative. But in both the SFS and the SIFS structures 

with high transparencies of SF interfaces decay length for superconducting 

correlations induced into F-layer is complex: 1 2H i    . Here 

   1 2exp / cos /   A L L   ,    1 2exp 2 / cos 2 /B L L    , and 

for   2/ 2   L    corresponding to the first 0 -     transition the second 

harmonic amplitude B  is always positive. 

The way forward is possible here due to the idea of the so-called 

“current in plane” SFS devices [44, 45] with NF or FNF multilayers in the 

weak link region consisting and with the supercurrent flowing parallel to FN 

interfaces. In these structures, superconductivity is induced from the S 

electrodes into the normal (N) film, while F films serves as a source of spin 

polarized electrons and provides an effective control for exchange field. The 

reduction of effective exchange energy here permits to increase the decay 

length from the scale of the order of 1 nm up to 100 nm. But the approaches 

developed during the analysis of such structures can not help us: the 

calculations performed did not go beyond linear approximation, hence the 

amplitude of the second harmonic in the CPR is considered small.  

The purpose of this chapter is to demonstrate that the mentioned 

concept of the current-in-plane devices (see Fig. 1) can be used as effective 

 -shifters. The structure of the paper is the following. In Sec. 2 we 

formulate quantitative model in terms of Usadel equations with Kupriyanov-

Lukichev boundary conditions. In Sec 3 the criteria of zero-current  -state 

existence are derived for different types of S-FN-S structure. Finally in Sec.4 

we consider properties of real materials and estimate the possibility to realize 

 -junctions using up-to-date technology. 
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2. MODEL 

We consider here different types of symmetric multilayered structures 

(see sketches on Fig.1). The structures consist of superconducting electrodes 

contacting either the end-wall of a FN bilayer (ramp type structures) or the 

surface of F or N films (overlap type geometry with thickness Fd , Nd  

respectively. The conditions of a dirty limit are fulfilled for all metals; 

effective electron-phonon coupling constant is zero in F and N films. We 

assume that the parameters BN  and BF  for the transparencies of NS and 

FS interfaces are large enough 

 

,

,

BN BN S S
BN

N N N N

S SBF BF
BF

F F F F

R

R

 


   

 


   

 
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 (1.3) 

in order to neglect suppression of superconductivity in S banks. Here 

,BN BFR R  and ,BN BF  are the resistances and areas of the SN and SF 

interfaces, ,S  N  and F ; ,S  N  and F  are the decay lengths and 

resistivities for the corresponding materials. 

 
Figure 1. (a) The S – NF – S junction, (b) the SNF – NF – FNS junction, (c) the SFN – FN – 

NFS junction and (d) the SN – FN – NS junction. 

Under the above conditions the problem of calculation of the 

supercurrent in the structures reduces to solution of the set of Usadel 

equations [47]  
2

2

2 *
Φ Φ 0, ,

Φ ΦC

G G
G T

   

  

  

  

      


 (1.4) 

where Φ  and G  are Usadel Green's functions in Φ  parametrization. 

They are ,Φ N  and ,NG  or ,Φ F  and ,FG  in N and F films 
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correspondingly,  2 1T m    are Matsubara frequencies (m=0,1,2,...). 

Here we use ,iH    and H  is the exchange field in ferromagnetic 

material, 
2 2

, , / 2N F N F CD T     for N and F layers respectively, ,N FD  

are diffusion coefficients,  / , /x z       is 2D gradient operator. To 

write equations (1.4), we have chosen the z  and x  axis in the directions, 

respectively, perpendicular and parallel to the plane of N film. We always 

set the origin in the middle of the junction at the free interface of F-film (see 

Fig.1). 

We calculate the supercurrent  SI   by integrating the standard 

expressions for the current density  , ,N Fj z  over the junction cross-

section:  

 

     

2 *
, *

2

, ,

0

2 , Φ Φ
‍ Φ Φ ,

‍ , ‍ , ,
F NF

F

N F

N F N F

d dd

S F N

d

ej z iG

T x x

I W j z dz W j z Wdz


  

 

 



  

  








  
  

  

 



 

 (1.5) 

where W  is the width of the structures, which is supposed to be small 

compared to Josephson penetration depth. It is convenient to perform the 

integration in (1.5) in F and N layers separately along the line located at 

0x  ; z -component of supercurrent vanishes from considerations of 

symmetry. 

Eq.(1.5) must be supplemented by the boundary conditions. Since 

these conditions link the Usadel Green's functions corresponding to the same 

Matsubara frequency  , we may simplify the notations by omitting the 

subscript  . At the NF interface the boundary conditions have the form: 

Φ
Φ Φ ,

Φ
Φ Φ ,

NF
BFN F F N

F

N F
BNF N N F

N

G

z G

G

z G


 




 



  
   

  

  
  

  

 (1.6) 

,BFN BFN F F
BFN BNF

F F N N

R  
 

   
   

where BFNR  and BFN  are the resistance and area of the NF interface. 

The conditions at free interfaces are  

 
Φ Φ

0,    0.N F

n n

 
 

 
 (1.7) 
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The partial derivatives in (1.7) are taken in the direction, which is 

normal to the boundary, so that n  can be either z  or x  depending on the 

particular geometry of the junction. 

We have ignored the suppression of superconductivity in S-banks, and 

hence we have:  

   
2 2

Φ / 2 Δexp / 2 ,    ,
Δ

S SL i G





   


 (1.8) 

where Δ  is magnitude of the order parameter here. Therefore for NS and FS 

interfaces we have:   

  

 

Φ
     Φ Φ / 2 ,

Φ
     Φ Φ / 2 .

N S
BN N N S

N

SF
BF F F S

F

G
L

n G

G
L

n G

 


 




  



  
   

  

 (1.9a)(1.9b) 

As in Eq. (1.7), n  in Eqs. (1.9a), (1.9b) is a normal vector directed 

into material mentioned in derivative. 

For the structure presented at Fig.1a, the boundary-value problem 

(1.4) - (1.9b) was solved analytically in the linear approximation [45], when 

    ,    .N FG sgn G sgn    (1.10) 

In the following sections we will go beyond the linear approximation in 

order to find new properties of CPR of the structures under consideration. 

3. RAMP- AND OVERLAP-TYPE GEOMETRIES 

The ramp type Josephson consists of the NF bilayer, laterally 

connected with S-banks (see Fig.1a and insets at Fig. 2).  
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Figure 2. (a) Normalized critical current IC versus normalized spacing L between S- elec-

trodes for SFS structure (2) and for heterostructures with thin NF bilayer (1). (b) CPR har-

monic amplitudes A (solid line) and B (dashed line) for S-NF-S structure versus spacing L 

for heterostructures with thick NF bilayer. Inset presents current distribution calculated for 

for the case of φ-junction existence (L = 0.33ξN),. The colors in the inset correspond to the 

intensity and sign of the current density concentration in the horizontal (x) direction. 

 

Properties of the considered structure are significantly different in the 

two opposite limits: in the limits of thin (1) / thick (2) N- and F- films. In the 

first case (thin films) the properties resemble the properties of the SFS 

junction with slightly enlarged coherence length (see Fig.2a). For the second 

case (thick films) the weak link region may be divided into domains with the 

supercurrent flowing in the opposite directions. The current density map 

along S-NF-S two-dimensional junction is shown in the inset at Fig.2b. 

Hence the first harmonic amplitudes in the CPR, A, may be equal to zero due 

to cancellation of the current contributions from F- and N- channels in  - 

and in 0-state, respectively. For certain parameters of NF bilayer (mainly for 

dN , dF) one can obtain stable  -state due to the strongly nonsinusoidal CPR 

with negative amplitude of the second harmonic, B. 

In general case, there are three characteristic scales for the decay of 

superconducting correlations: ,N  1 2 ,H i     1 2i     [48].The 

first two scales determine decay and oscillations of superconducting 

correlations far from FN interface, while the last one,  , describes their 

behavior in its vicinity. Similar length scale   occurs near a domain wall in 

ferromagnets [49]. Here the exchange field is averaged out for antiparallel 

directions of magnetizations, and the decay length of superconducting 

correlations tends to N . At FN interface, the flow of spin-polarized 

electrons from F to N metal and reverse flow of unpolarized electrons from 

N to F suppresses the exchange field thus providing the existence of  . 
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Under certain set of parameters these scales, 
1 , and, 

2 ,  can be 

comparable with ,N  which is typically much larger than 
1  and 

2    

( /F CT H   for CH T ). 

The existence of three decay scales, ,N  ,  and ,H  should lead to 

appearance of three contributions to total supercurrent, ,NI  FNI  and ,FI  

respectively. The main contribution to “normal” component NI  comes from 

the supercurrent, which in uniformly distributed in the N-film. In accordance 

with the mentioned above qualitative analysis [50], it is the only current 

component which leads to a negative value of the amplitude of the second 

harmonic B  in the CPR. The smaller is the distance between the S-

electrodes, L , the larger is this contribution to the total supercurrent. To 

create a   contact, one need to compensate the amplitude of the first 

harmonic, ,A  in a total current to a value that satisfies the conditions (1.2). 

Contribution to this amplitude A  from NI  also increases with decreasing 

spacing L . Obviously, it's difficult to suppress the coefficient A  due to the 

“boundary” contribution FNI  only, since FNI  flows through thin near-

boundary layer. Therefore, strong reduction of A  can be obtained as a result 

of competition between NI  and FI  currents flowing in opposite directions 

in N and F films far from FN interface. Note that the oscillatory behaviour of 

the  FI L  dependence allows to met conditions (1.2) in a certain range of 

L . The role of “boundary” contribution FNI  in the required balance 

between NI  and FI  can be understood by solving the boundary value 

problem (1.4) - (1.9b) which admits an analytic solution in some interesting 

cases. 

Spacing L is small. Solution of the boundary-value problem (1.4)-

(1.9b) can be simplified in the limit of small distance between 

superconducting electrodes: 

  1min , .NL    (1.11) 

In this case we decide to neglect non-gradient terms in (1.4). Hence 

the contributions to the total current resulting from the redistribution of 

currents near the FN interface cancel each other leading to 0FNI   [50]. As 

a result, the total current  SI   is a sum of the following two terms  

      ,S N FI I I     



10 S. V. Bakurskiy et al. 

 

   2

2

2 Δ sin1
‍

N N S

N BN N N

eI G G

TWd



 

 

    

   (1.12) 

   2

2

2 Δ sin1
‍

F N S

F BF F F

eI G G

TWd



 

 

    

   (1.13) 

where 

2 2 2Δ cos
2

NG






 

  
 

. The “normal” and “ferromagnet” 

currents  NI   and  FI   flow independently across the corresponding 

parts of the weak link. The  ,N FI   dependencies coincide with those 

calculated previously for double-barrier junctions [51] when value L  lies 

within the interval from the inequalities (1.11). 

It follows from (1.12), (1.13) that in this case the amplitude of the first 

harmonic for “ferromagnet” component  FI   is always positive and the 

condition (1.2) can not be met. 

Spacing L is intermediate. In this limit we have 

1 NL    (1.14) 

and for the values of suppression parameters at SN and SF interfaces 

satisfying the conditions (1.3), the boundary problem (1.4)-(1.9b) can be 

solved analytically for sufficiently large magnitude of suppression parameter 

.BFN  It was shown in [50] that under these restrictions in the first 

approximation we can neglect the suppression of superconductivity in the N 

film due to proximity with the F layer: 

2 2 2

Δ sin
2

Φ Δcos , ,
2

Δ cos
2

S

N N

BN N N

G
x

i G
G



 

  


 
 

      
   

  
 

 (1.15) 

while spatial distribution of  Φ ,F x z  includes three terms.  

The first two terms in (1.15) describe the influence of the N film, 

while the last one has the form well known for SFS junctions. Expression 

(1.5) allows us to represent the total supercurrent in the form: 

        .S N F FNI I I I       (1.16) 

Here  NI   is given by the expression (1.12). The second term in 

(1.16) in the limit of small transparencies of SF interfaces is as follows: 
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   

 

2 2

2 2

2 Δ sin
,

Ωsinh 2

F S

F BF F F L

eI G

TWd q



 

 

    

   (1.17) 

where Ω / 2 ,L Fq L    Ω Ω sgn Ω / ,CiH T   Ω / .CT   

 
Figure 3. Numerical results for the amplitudes A, B in the CPR of the ramp-type S-NF-S 

structure (dN = 0.1ξN; dF = 1.06ξN) and their components AN, AF, BN; BF vs spacing L at 

T = 0.7TC. Parameters are chosen to form enhanced φ-state interval marked by “ΔL”. 

 

The last contribution contains three components  

       1 2 3 .FN FN FN FNI I I I       (1.18) 

with additional smallness parameters 
1

BFN 
 and 

1 /BFN F N  
 in comparison 

with the “ferromagnet” component  FI  . Nevertheless, these terms should 

be taken into account in the analysis because they decay significantly slower 

than  FI   with increasing spacing L . 

Stable zero-current φ -state. Here we need relativele large absolute 

value for the amplitude of the second harmonic (and hence we need low 

temperatures). But in the limit CT T  we can go from summation to 

integration over   in (1.12), (1.17). Thus 

 
 

2 Δ
sin sin ,

2

N

N BN N N

eI
K

Wd

 


  

 
  

 
 (1.19) 

where  K x  is the complete elliptic integral of the first kind. We expanded 

the obtained expression (1.19) in the Fourier series: 

 
1

2 2

0 0

0

8
1 Υ ,N AA Q x x K x dx Q


    (1.20) 
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 
1

4 2

0 0

0

32
2 1 Υ ,N N BB A Q x x K x dx Q


     (1.21) 

where 0 Δ /N BN N NQ Wd e   . ,N NA B are the first and the second 

harmonic amplitudes of  NI  ,  

2

2 2

2
3

2
Υ           ;0.973,

1 7
Γ Γ

4 4

1 1 5
Υ          2Υ , , ;1,4;1 ; 0.146,

2 2 2 2

A

B A F






   
   
   

 
   

 

 

where  Γ z  is the well-known Gamma-function and  p qF  is generalized 

hypergeometric function. 

Evaluation of the sums in (1.17) can be done for CH T  and 

CT T  resulting in sinusoidal “ferromagnet” component 

   sinF FI A   with 

 0

2
exp cos ,

4
FA P L L

h


 

 
   

 
 (1.22) 

/ 2 ,Fh   / Ch H T  and 
2

0 Δ / .F BF F FP Wd e    Substitution of 

(1.20), (1.21) into the inequalities (1.2) gives analytical form of the  -state 

conditions for the ramp-type structure:  

 
21

Υ Ψ 2 Υ , ,
2

N F FBF
A B

BN F N N

dh
L

d

 


   
    (1.23) 

   Ψ exp cos .
4

L L L


 
 

   
 

 

These expressions give us the limitation on geometrical and material 

parameters of the considered junctions providing the existence of stable 

zero-current  -state. Function  Ψ L  has the first minimum at / 2,L   

 Ψ / 2 0.147    . For large enough values of   inequality (1.23) can 

not be fulfilled at any spacing L . Thus solutions exist only in the area with 

upper limit  

 Ψ / 2
0.216.

Υ 2 ΥA B

 



 


 (1.24) 
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At 0.216   the left hand side of inequality (1.23) equals to its right 

hand part providing the nucleation of an interval of L  in which we can 

expect the creation of a  -structure. This interval increases with decrease of 

  and achieves its maximum length  

1.00 2.52,L  (1.25) 

at 
 Ψ / 2

0.116.
Υ 2 ΥA B

 



 


 Nota bene: at  Ψ / 2 / Υ 0.151A      

there is a transformation of the left hand side local minimum in (1.23), which 

occurs at / 2,L   into local maximum; so that at 0.116   the both 

sides of (1.23) become equal to each other, and the interval (1.25) of  

contact existence subdivides into two parts. With a further decrease of   

these parts are transformed into bands, which are localized in the vicinity of 

the 0   transition point  0N FA A  . These narrow valleys of required 

parameters take place at / 4L   and 5 / 4.L   The width of the 

mentioned bands decreases with decrease of .  

Thus, our analysis has shown that for  

0.12 0.2   (1.26) 

we can expect the creation of   structure in a sufficiently wide range ΔL

of spacing between the S-electrodes. One can determine the value ΔL  from 

equation (1.23).  

Let us take into account the impact of the interface term  FNI  . In 

the considered case we have [50] the following contributions: 

 
0

1 3/2

1

2 exp cos
2 2 4

sin(
F

FN

BF BN N

L L
U

I
h

  


 
  

   
    
    ) (1.27) 

   0
2 3/2

1

2
sin  sin

4 2

F
FN

BF BN N

U
I K

h

 
 

  

 
   

 
 (1.28) 

 
0

3

2 exp sin
2 2

sin(
F

FN

BF

L L
U

I
h

 


 


   
   
     )    sin

2
K

 
 
 

 (1.29) 

where 0 Δ / .BFN FU W e   In the range of spacings / 4 5 / 4L     

the currents  2FNI   and  3FNI   are less than zero. These contributions 

have the same form of CPR as it was for the “normal”  NI   term, and due 

to negative sign suppress the magnitude of supercurrent across the junction 

thus making the inequality (1.23) easier to perform. The requirement 0B   
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imposes additional restriction on the value of the suppression parameter 

BFN  

1/2
.N N BNF

BFN

N F N BFN BFhd h

  


   

 
  

 
 (1.30) 

In order to obtain this inequality we have used the fact that in the 

range of distances between the electrodes / 4 5 / 4L     depending on 

L  factor in (1.29) is of the order of unity. It follows from (1.30) that for a 

fixed value of 
BFN  domain of  -structure existence extends with increase 

of thickness of N-film 
Nd . Stable zero-current -state is impossible if 

Nd  

becomes smaller than the critical value, ,NCd   

1/2
.N N BNF

NC

F BFN N BFN BF

d
h h

  

    

 
  

 
 (1.31) 

The existence of the critical thickness NCd  follows from the fact that 

the amplitude B  in “normal” component NI  is proportional to ,Nd  while in 

FNI  term B  is independent on .Nd  The sign of  1FNI   term is positive 

for / 4 3 / 4L     and negative for 3 / 4 5 / 4L     thus 

providing an advantage for a   structure realization for the spacings which 

correspond to the second interval. 

Figure 4b illustrates our analytical results. The solid line at the figure 

is the absolute value of the first harmonic amplitude versus spacing L  

between S-banks. It is the sum of two components, which were calculated 

from expressions (1.17) (dash-dotted line) and (1.12) (dashed line). The 

dash-dot-dotted line at Fig. 4b is the amplitude of the second harmonic in 

“normal” component (1.12). The dotted line is the  FNI L  dependence 

calculated from (1.18). We made all calculations for the following set of 

parameters, which is close to those in real experiment: 0.1N Nd  , 

0.65F Nd  , 0.1BN  , 1BF  , 10BNF  , 0.1F N  , N F  , 

0.7 CT T , 10 CH T . All the amplitudes in CPRs were normalized using 

factor   1(2 / ) .N Ce WT 
 There is an interval of spacings L , when the 

currents in N and F layers flow in opposite directions and the points of 

0   transitions for both dependencies become closer to each other. In the 

entire region between these points, the conditions (1.2) are fulfilled. This is 

exactly the reqired “ L interval”, inside which a zero-current stable  

state can be achieved. The contribution of FNI  term into the total 

supercurrent in accordance with our analisys is really small. 
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To confirm the obtained findings we have solved the boundary 

problem (1.4)-(1.9b) for the same set of parameters of the structure except 

.Fd  The results of calculations for two values of F-layer thikness 

( 1.06F Nd   and 1.4F Nd  ) are presented at Fig.3 and Fig.4a. The solid 

lines in Fig.3 correspond to the absolute values of the amplitudes of the first, 

 
 

 

 

Figure 4. (a) Numerically calculated CPR amplitudes A and B versus electrode spacing L 

for S-FN-S structures with   1  ,06F Nd   (solid and dashed lines respectively). Enhanced φ-

interval ΔL1 is much larger than the sum of “standard” φ -intervals ΔL2 and ΔL3 (see dashed 

lines for 1.4F Nd  ). (b) Analytically calculated amplitudes A and B in the CPR of the 

ramp S-NF-S structure (    0,1N Nd  ,    0,65F Nd  ) and their components AN, AF, AFN 

versus spacing L at temperature T = 0,7TC. Interval of φ-state existance, ΔL, is marked. 
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,A  and the second, ,B  harmonic in CPR. The dashed and dash-dotted 

curves demonstrate the contributions to these amplitudes from the 

supercurrents, respectively, in N and F layers. The main difference between 

analytical solutions presented in Fig.4b and the results of numerical 

calculations belong to the limit of small spacings .L  The amplitudes of the 

first and the second harmonics of the supercurrent in the normal layer 

decrease with  increasing spacing. The points of 0   transition of the first 

harmonic amplitude of the supercurrent in the ferromagnetic are shifted to 

the right, toward larger distances between superconducting electrodes. The 

amplitude of the second harmonic here, ,FB  in the vicinity of 0.2 NL   is 

negligibly small in comparison with the magnitude of 
NB . As a result, the 

shapes of  A L  curves in Fig. 4b and Fig.3 are nearly the same, with a little 

bit larger interval of stable zero-current   state for the curve representing 

numerical results. 

In Figure 4a we demonstrate the same dependencies  A L  and 

 B L  as in Fig.3 (solid and dashed lines) together with similar curves 

calculated for thee case 1.4F Nd   (dash-doted and dotted lines for A and 

B). For larger values of Fd  we get out of the interval (1.26) and instead of 

relatively large zone 1ΔL  have to deal with two very narrow intervals 2ΔL  

and 3ΔL  located in the vicinity of 0   transitions of the first harmonic 

amplitude .A  
 

Overlap type geometry. From technological point of view the overlap-

type geometry (with the overlap length much larger N , see Fig. 1b)  looks 

more reliable than the ramp-type one. We have shown in our numerical 

calculations that in the case of thin layers and large transparency of FN 

interface it doesn't matter, whether the film of normal metall lays above or 

behind the F-layer (see Fig 5a). 
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At arbitrary layer thickness in SFN-FN-NFS junctions (Fig. 5b) the 

large difference between values N  and F  results in formation of two (SFS 

and SFNFS) competing parallel current channels. In SNF-NF-FNS structures 

the current through long SNFNS channel is always much smaller than the 

current through SNS pathway. In SFN-FN-NFS structures the signs of the 

critical current CI  and harmonic amplitudes in the SFS channel are 

controlled by the distance L  between S-banks. The sign of the SFNFS 

contribution to the total supercurrent is a function of ferromagnetic layer 

thickness, Fd . In Fig. 6a we represent the phase diagram of the CPR 

harmonic amplitudes in  , FL d  plane: the proper choice of the F-film 

topology allows  

(1) to suppress the amplitude of the first harmonic in CPR 

(a)  

(b) 

Figure 5.   Numerically calculated normalized critical current IC vs spacing L for (1) SNF-

NF-FNS, (2) SFN-FN-NFS and (3) the ramp-type S-NF-S junctiones in the case of (a) thin, 

       0,01N F Nd d   , and (b) thick,        3N F Nd d   , layers. 
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(2) to make the necessary sign for zero-current -state existence for the 

amplitude B of the second one (see Fig. 6b). 

 

Combined ramp-type-overlap (RTO) junctions. It will be somewhat 

easier to fulfill the conditions for the   structure existence due to slight 

modifications of junction topology. We need here a combination of the 

ramp-type and the overlap-type configurations, as it is shown in Fig.1. Fig. 

7a demonstrates numerical calculattions of spatial distribution of 

supercurrent in RTO  -structure at Josephson phase / 2  .  

(a)  

(b) 

Figure 6. (a) (L, dF ) phase diagram in SFN-FN-NFS structure with alternating 0- and -state 

areas.. (b) Harmonic amplitudes A (solid) and B (dashed line) in the CPR for SFN-FN-NFS 

structure versus spacing L for heterostructures with thick FN bilayer. 
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The supercurrent density is represented through the color saturation . 

The amplitude of the first  

harmonic is relatively small here due to opposite current directions in N and 

F layers. The main feature of the ramp-type-overlap geometry is seen to be 

specific current distribution in the normal metall layer leading to another 

(a)  

(b) 

Figure 7. (a) Current distribution along the RTO-type SN-FN-NS structure at    0,63 NL  , 

   N Nd  ,    2F Nd   and T = 0.7TC. The intensity of color corresponds to the supercurrent 

density in directions indicated by arrows. (b) The amplitudes of the first harmonic ΥA  (solid 

line) and the second one ΥB  (dashed line) normalized on 2 Δ / BNW e N  versus reduced 

thickness Υ  BM . Inset shows the ratio of harmonics Υ / ΥB A versus ΥBM . 
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CPR shape with dependence on thickness 
Nd . Further, the current NI  

should saturate as a function of 
Nd , since normal film regions located at 

distances larger than N  from SN interface are practically excluded from the 

process of supercurrent transfer due to exponential decay of proximity-

induced superconducting correlations. The RTO structure was analysed in 

the most intersting practical case of thin layer of normal metall  

 N Nd   (1.32) 

 ,NL   (1.33) 

and sufficiently large characteristic of boundary transparency 
BFN  

providing negligibly small suppression of superconductivity in N film due to 

proximity with F layer. Under these conditions we can at the first stage 

consider the Josephson effect in overlap SN-N-NS structure. Then, at the 

second stage we will use the obtained solutions to calculate supercurrent 

flowing across the ferromagnetic pathway in the RTO structure [50]. Once 

again we represent the supercurrent in the following form: 

        S N F FNI I I I      . (1.34) 

Expression for the IN component has the form  

   

 

2 2

2 2 2 2

sin Ω2 2
‍ ,

2Ω Ω

BM SN

N N N BM

r GeI

TWd
r



 

  

      




 
  (1.35) 

where  / Ω ,S BM Sr G G   /BM BN N Nd    and 

 2 2 2 2Ω cos / 2 ,r     Δ / .CT   

The “ferromagnetic” term  FI   in (1.34) is the supercurrent through 

one dimensional double barrier SFS structure defined by Eq. (1.17), while 

the FN-interface term  FNI   was discussed before. 

The larger is the relative amplitude of the second harmonic (or the 

lower is the temperature of a junction compare to CT ), the better we meet 

the conditions for the implementation of a zero-current  -state. At high 

temperature CT T  we can transform summation into integration over   in 

(1.35) and calculate numerically the dependences A  and B : 

 
2 Δ

Υ ,N A

N BN

W
A

e 
  (1.36) 

 
2 Δ

ΥN B

N BN

W
B

e 
  (1.37) 



Compact Josephson φ-junctions 21 

 

on suppression parameter .BM  The results of our calculations  ΥA BM  

and  ΥB BM  are presented in Fig. 7b. Bboth ΥA  and ΥB  increase with 

increasing of BM  and saturate at 1.BM   Inset in Fig. 7b shows the ratio 

of the harmonics Υ / ΥB A  as a function of BM . It achieves maximum at 

0.64,BM   thus it determines the optimal values of normalized amplitudes 

of the first Υ 0.844A   and the second Υ 0.175B    harmonics of the 

current in the film of normal metall. It is seen from the inset in Fig. 7b, that 

the ratio Υ / ΥB A  is slowly decreasing function of BM . Therefore, the 

estimates given below for 0.64BM   are applicable in a wide range of 

parameters: 0.5 10BM  . 

 

 
Hence we can write down the condition of zero-current  -state 

existence similar to (1.23) 

 
21

Υ Ψ 2 Υ , ,BF F F
A B

BN F N

h
L

d

  


  
    (1.38) 

    Ψ exp cos ,
4

L L L


 
 

   
 

 

with modified dimensionless parameter  . The wide region of  -state 

existence still can be found if   is within the interval  

Figure 8. The amplitudes A, AN, AF, B of the CPR harmonics vs spacing L for the RTO 

junction at small temperature CT T , BM  = 0:64 and ε = 0,123. The mark "ΔL" 

shows enhanced φ-state interval. 
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 0.123 0.298  . (1.39) 

L  value here satisfies the condition (1.38). As follows from (1.38), 

interval of L  product gains its maximum length  

 0.94 2.72,L   (1.40) 

at 0.123  . These intervals are slightly larger than those given by (1.25) 

for the ramp-type junction topology. 

Fig. 8 represents our main results for the interval of  -state existence, 

Δ ,L  in the ideal case of ,CT T  0.64BM   and 0.123  . The 

corresponding set of parameters 0.64N Nd  , 1.45F Nd  , 1BN  , 

1BF  , 0.1F N  , 
N F  , 10 CH T  was substituted in Eqs. (1.17), 

(1.35). The solid line is an absolute value of the first harmonic amplitude; its 

normal, ,NA  and ferromagnetic, ,FA  components are shown by dashed and 

dash-dotted lines respectively. The second harmonic amplitude is shown as 

dash-dot-dotted curve. It's clear that A  is small enough in the wide region 

ΔL  and reaches the value of 2B  only at local maximum. The increased 

width of ΔL  is provided by geometric attributes of RTO type structure. 

Let us illustrate the range of nontrivial ground phase g  with the help 

of Fig. 9. Here the total supercurrent SI  is shown as a function of Josephson 

phase   and spacing L . It means that each L section of this 3D graph is a 

single CPR. Thick red lines mark the ground state phases at each value of .L
In the range of small and large spacing L  ground phase is located at 

0.g  However, in the ΔL -interval the CPRs become significantly 

nonsinusoidal and demands ground phase g  to split and go to   from both 

sides; then   state is realized at / 2L  . Clearly, for 0.123   the 

value g   can not be reached (see Fig. 9a), while in the case of 

0.123   the prolonged  -state region is formed (see Fig. 9c). 

 

4. DISCUSSION AND CONCLUSION 

We have shown that zero-current stable  -state  

– can not be achieved in conventional SIS, SNS and SFS structures; 

– can be realized in S-NF-S structures with longitudinally oriented NF-

bilayers. We have discussed the conditions for creation of  -junctions in the 

ramp-type S-NF-S, in the overlap-type SFN-FN-NFS, and in the combined 
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RTO-type SN-FN-NS geometries. The most favorable suggestions for 

experimental realization of  -structure are based on using copper as a 

normal film ( 100  N nm   and 
85*10   Ωm  ) and strongly diluted 

ferromagnet like FePd or CuNi alloy  10   , 10F Cnm H T    as the F-

layer. We would like to chose Nb  9CT K  as a material  for S-electrodes 

since it is widely used in superconducting applications. We also propose to 

use sufficiently thick normal layer (above the saturation threshold) when N-

layer thickness have almost no effect. After substitution of relevant values 

into Eqs. (1.39) and (1.40) we came to a fairly broad geometrical margins, 

within which there is a possibility for creation of  -structures  

        50   ,

60             150   ,

7             22   .

N

F

d nm

nm d nm

nm L nm



 

 

 (1.41) 

Finally, the width: the last out-of-plane characteristic geometrical 

scale can be put equal to 140 W nm . This allows to maximize “available” 

supercurrent and conserves the scale of structure in a range of 100 nm . The 

magnitude of the critical current in the  -state is determined by the second 

harmonic amplitude B   

 
2 Δ

~ Υ 1 .C N B

N BN

W
I B mA

e 
   (1.42) 

The spreads of geometric scales for creation of  -junction as well as 

the magnitude of it’s critical current are large enough for practical realization 

of the considered compact structure. 
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Figure 9. The total supercurrent IS versus Josephson phase φ and spacing L for the optimal 

RTO structure at     CT T ; ΥBM  = 0,64 and at different F-layer thickness parameters  

(a) ε = 0.137, (b) ε = 0.123, (c) ε = 0.111. The lines mark the ground states phase φg [50]. 

By creating  -state in a Josephson junction one can fix certain value 

of ground phase g . Temperature variation slightly shifts the interval of 

relevant 0 -  transition and permits one to tune the desired ground state 

phase. The prospects for the practical use of such structures are related to the 

possibility of obtaining bistable logic or memory elements on their basis. 

The characteristic time for the read and, of particularly importance, the write 

operation here is determined by the Josephson processes and, as a 

consequence, in many orders of magnitude less than this value in typical 

cryogenic magnetic-memory cells. Additional superconducting layer in the 

region of the weak link will increase here the characteristic voltage and 

frequency to the values that are close to typical for tunnel junctions [52]. 

Moreover, for the  -state of the junction the double-well potential is formed 

at the degeneracy point without any additional fields and ground state 

splitting provides necessary condition for quantum bits and quantum 

detectors. To summarize, Josephson  -structures can be realized using up-

to-date technology as a novel basic element for superconducting electronics. 
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