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RHAMM-selective peptides in a concentration of 10 ug/ml (2x107 M) inhibited the growth
of MDA-MB-231 breast cancer cells over 48 h. Treatment of cancer cells with RHAMM-
selective peptides induced apoptosis and necrosis and increased caspase-3 activity (by 30%).
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Hyaluronan-mediated motility receptor (HMMR) is
a multifunctional extra- and intracellular protein that
utilizes hyaluronic acid (HA) as the substrate and in-
teracts with tubulin [2] involved in the formation of
the mitotic spindle [7]. HA is a polysaccharide with
structural and signal functions in the cell, and hence,
HA is involved in immunity, tissue differentiation,
and homeostasis [5]. The function of HA depends on
the polysaccharide size: high-molecular-weight HA is
responsible for structural functions, low-molecular-
weight HA binds to and interacts with cell receptors
(CD44 and RHAMM). These low-molecular-weight
fragments of HA transmit signals to cell pathways
regulating proliferation, differentiation, adhesion, mo-
tility, and invasive activity of cancer cells [6,12,14].
Excessive synthesis of high-molecular-weight HA
is observed in arthritis, diabetes, and cancer [1,14].
RHAMM is involved in proliferation, migration, in-
vasion, and formation of the mitotic spindle in tumor
cells [4,13,14]. It is shown that RHAMM is synthe-
sized in excess in aggressive cancer cells, such as BC
cells, hematological, prostatic, colorectal cancer cells,
in solid tumors, myeloid leukemia, and multiple my-
eloma. Enhanced synthesis of RHAMM and HA usual-
ly correlates with poor prognosis [3,8]. It is shown on
model cancer systems that carboxyl-terminal RHAMM
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sequence contains binding center for HA, tubulin, and
special sites essential for manifestations of its onco-
genic characteristics [9]. For these reasons, RHAMM
is an ideal molecular target for the development of
targeted antitumor drugs. Peptides specifically inter-
acting with RHAMM have been identified and char-
acterized [10,15]. It is shown that RHAMM-selective
peptides compete for HA binding center, selectively
bind recombinant RHAMM protein, easily penetrate
into cancer cells, and are stable in blood serum [10].
However, the effects of RHAMM-selective peptides
on the growth of BC cells are not studied.

We studied the effects of RHAMM-selective pep-
tides on survival, apoptosis, and necrosis of BC cells
in vitro in cell cultures.

MATERIALS AND METHODS

The study was carried out on three cell lines: human
mammary carcinoma adhesive cells MDA-MB-231
with high expression of RHAMM, normal mouse fi-
broblasts, and RHAMM ™ fibroblasts. The RHAMM -
fibroblasts cell lines were obtained as described pre-
viously [11]. Adhesive culturing was carried out in
DMEM with 10% fetal calf serum at 37°C and 5% CO,,.

RHAMM-selective peptides (EEDFGEE-
AEEEA - peptide No. 35; VEGEGEEGEEY - pep-
tide No. 37; and FTEAESNMNDLYV — peptide No. 40)
were obtained as described previously [10,15].

The studied cell lines were inoculated in flat-
bottom 96-well plates (1000 cells/well) and cultured
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for 24 h in an incubator at 37°C, 5% CO,, and 95%
humidity. Growth medium was added to all cell lines.
MDA-MB-231 cells were cultured in 200 pl growth
medium under the same conditions. RHAMM-selec-
tive peptides in a concentration of 10 ug/ml (4 pM)
were then added to the wells (100 pl/well) in order
to evaluate cell survival or the effects of peptides on
apoptosis and necrosis, respectively, and the plates
were incubated for 24 h at 37°C. An equal volume of
PBS was added into control wells. All measurements
were repeated 3 times.

Cell survival was evaluated by the fluorescent
method (AlamarBlue) based on evaluation of transfor-
mation of the “blue” slightly fluorescent reazurin into
“pink” intensely fluorescent resofurin by the living
cell mitochondrial dehydrogenase. AlamarBlue (10 ul)
was added directly to MDA-MB-231 cells into growth
medium after 0.5, 3, 24, and 48 h. The fluorescence
intensity was measured at 570/590 nm using a fluores-
cent plate. Cell survival under the effect of RHAMM-
selective peptides was evaluated by comparing the
fluorescence in experimental and control wells. The
results were presented as the means of 3 independent
experiments.

Quantitative evaluation of the peptide effects on
apoptosis and necrosis of cells was carried out using
ELISAPLUS Kit (Roche Diagnostic). Apoptosis and ne-
crosis induction were evaluated by measuring histon
components of mono-, oligonucleosomes (histons H1,
H2A, H3, and H4). Optical density was measured at
405/490 nm. All measurements and all experiments
were carried out in triplicates.

Caspase-3 activity was measured by colorimetry.
Human BC cells were inoculated in 24-well plates
(1000 cells/well) and incubated for 24 h in DMEM
(Multicell) with 10% fetal calf serum, after which
RHAMM-selective peptides were added (4 ul, 100
ul/well) to the cells and incubated (24 h, 37°C). Con-
trol cultures were incubated in growth medium with
10% serum. Caspase-3 activity was measured with
Caspase-3 Colorimetric Assay Kit (GenScript). Acti-
vation of caspase-3 was evaluated by cleavage of the
caspase-3-specific colorimetric substrate (DEVD-p-ni-
troanilide). Optical density of each well was measured
using a Wallac 1420 multirow counter (Perkin Elmer)
at 405 nm. The data were presented as the means of 3
repeated experiments.

The data were statistically processed by Graph-
PadPrizm software (one-way ANOVA). The differ-
ences were considered significant at p<0.05.

RESULTS

All three peptides inhibited the growth of tumor cell
cultures (Fig. 1, a). Incubation with the peptides for
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48 h suppressed cell viability by 50%. It should be
noted that viability of BC cell cultures was eftectively
suppressed by RHAMM inhibitors in low concentra-
tions, a true advantage of these peptides as prospective
antitumor drugs.
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Fig. 1. Effects of RHAMM-selective peptides on MDA-MB-231 cell
survival (a), apoptosis (b), and necrosis (c). Here and in Fig. 3:
***p<0.001 in comparison with the control.
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Fig. 2. Effects of RHAMM-selective peptides on fibroblast apoptosis (a) and necrosis (b).

As cell survival was significantly reduced by
RHAMM-selective peptides, it was essential to iden-
tify the MDA-MB-231 cell death type. RHAMM in-
hibitors in a concentration of 10 pg/ml (2x107 M),
especially peptides Nos. 37 and 40, 4-5-fold increased
apoptosis induction in the cells (Fig. 1, ). These re-
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sults suggest that RHAMM inhibitors were involved in
apoptosis pathways in MDA-MB-231 cells. Necrotic
death of MDA-MB-231 cells was increased signifi-
cantly (approximately 4-fold) by peptides Nos. 37 and
40 (Fig. 1, ¢). In order to verify the selective effects
of the peptides on tumor cells, we studied the effects
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Fig. 3. Effects of RHAMM-selective peptides on RHAMM-- fibro-
blast apoptosis (a) and necrosis (b) and caspase-3 activity (c) in
MDA-MB-231 cells.
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of RHAMM inhibitors on apoptosis and necrosis of
normal fibroblasts. RHAMM-selective peptides caused
virtually no changes in apoptosis and necrosis of nor-
mal cells (Fig. 2, a, b). All three peptides caused in
fact no changes in fibroblast (RHAMM™") apoptosis
and necrosis (Fig. 3, a, b). These results confirmed
that the effects of RHAMM-selective peptides were
tumor-specific and RHAMM-mediated. These find-
ings suggest that RHAMM-selective peptides in low
concentrations induced death of breast cancer cells
(MDA-MB-231) within 24 h after their addition.

Activity of caspase-3 increased by 30% in MDA-
MB-231 cells in comparison with intact cells (Fig. 3,
¢). These data confirmed the involvement of caspase-3
in cancer cell apoptosis induction, as all three peptides
stimulated significantly its activity.

Hence, RHAMM-selective peptides inhibit the
viability and induce apoptosis and necrosis of breast
cancer cells. These data suggest the use of RHAMM-
selective peptides for target therapy for cancer, as they
are tumor cell-specific and easily synthesized.
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