
658

0007 -4888/15/1595�0658  © 2015  Springer Science+Business Media New York
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RHAMM-selective peptides in a concentration of 10 μg/ml (2×10–7 M) inhibited the growth 
of MDA-MB-231 breast cancer cells over 48 h. Treatment of cancer cells with RHAMM-
selective peptides induced apoptosis and necrosis and increased caspase-3 activity (by 30%).
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Hyaluronan-mediated motility receptor (HMMR) is 
a multifunctional extra- and intracellular protein that 
utilizes hyaluronic acid (HA) as the substrate and in-
teracts with tubulin [2] involved in the formation of 
the mitotic spindle [7]. HA is a polysaccharide with 
structural and signal functions in the cell, and hence, 
HA is involved in immunity, tissue differentiation, 
and homeostasis [5]. The function of HA depends on 
the polysaccharide size: high-molecular-weight HA is 
responsible for structural functions, low-molecular-
weight HA binds to and interacts with cell receptors 
(CD44 and RHAMM). These low-molecular-weight 
fragments of HA transmit signals to cell pathways 
regulating proliferation, differentiation, adhesion, mo-
tility, and invasive activity of cancer cells [6,12,14]. 
Excessive synthesis of high-molecular-weight HA 
is observed in arthritis, diabetes, and cancer [1,14]. 
RHAMM is involved in proliferation, migration, in-
vasion, and formation of the mitotic spindle in tumor 
cells [4,13,14]. It is shown that RHAMM is synthe-
sized in excess in aggressive cancer cells, such as BC 
cells, hematological, prostatic, colorectal cancer cells, 
in solid tumors, myeloid leukemia, and multiple my-
eloma. Enhanced synthesis of RHAMM and HA usual-
ly correlates with poor prognosis [3,8]. It is shown on 
model cancer systems that carboxyl-terminal RHAMM 

sequence contains binding center for HA, tubulin, and 
special sites essential for manifestations of its onco-
genic characteristics [9]. For these reasons, RHAMM 
is an ideal molecular target for the development of 
targeted antitumor drugs. Peptides specifi cally inter-
acting with RHAMM have been identifi ed and char-
acterized [10,15]. It is shown that RHAMM-selective 
peptides compete for HA binding center, selectively 
bind recombinant RHAMM protein, easily penetrate 
into cancer cells, and are stable in blood serum [10]. 
However, the effects of RHAMM-selective peptides 
on the growth of BC cells are not studied.

We studied the effects of RHAMM-selective pep-
tides on survival, apoptosis, and necrosis of BC cells 
in vitro in cell cultures.

MATERIALS AND METHODS

The study was carried out on three cell lines: human 
mammary carcinoma adhesive cells MDA-MB-231 
with high expression of RHAMM, normal mouse fi -
broblasts, and RHAMM–/– fi broblasts. The RHAMM–/– 
fi broblasts cell lines were obtained as described pre-
viously [11]. Adhesive culturing was carried out in 
DMEM with 10% fetal calf serum at 37oC and 5% CO2.

RHAMM-selective peptides (EEDFGEE-
AEEEA – peptide No. 35; VEGEGEEGEEY – pep-
tide No. 37; and FTEAESNMNDLV – peptide No. 40) 
were obtained as described previously [10,15].

The studied cell lines were inoculated in flat-
bottom 96-well plates (1000 cells/well) and cultured 
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for 24 h in an incubator at 37oC, 5% CO2, and 95% 
humidity. Growth medium was added to all cell lines. 
MDA-MB-231 cells were cultured in 200 μl growth 
medium under the same conditions. RHAMM-selec-
tive peptides in a concentration of 10 μg/ml (4 μM) 
were then added to the wells (100 μl/well) in order 
to evaluate cell survival or the effects of peptides on 
apoptosis and necrosis, respectively, and the plates 
were incubated for 24 h at 37oC. An equal volume of 
PBS was added into control wells. All measurements 
were repeated 3 times.

Cell survival was evaluated by the fl uorescent 
method (AlamarBlue) based on evaluation of transfor-
mation of the “blue” slightly fl uorescent reazurin into 
“pink” intensely fl uorescent resofurin by the living 
cell mitochondrial dehydrogenase. AlamarBlue (10 μl) 
was added directly to MDA-MB-231 cells into growth 
medium after 0.5, 3, 24, and 48 h. The fl uorescence 
intensity was measured at 570/590 nm using a fl uores-
cent plate. Cell survival under the effect of RHAMM-
selective peptides was evaluated by comparing the 
fl uorescence in experimental and control wells. The 
results were presented as the means of 3 independent 
experiments.

Quantitative evaluation of the peptide effects on 
apoptosis and necrosis of cells was carried out using 
ELISAPLUS Kit (Roche Diagnostic). Apoptosis and ne-
crosis induction were evaluated by measuring histon 
components of mono-, oligonucleosomes (histons H1, 
H2A, H3, and H4). Optical density was measured at 
405/490 nm. All measurements and all experiments 
were carried out in triplicates.

Caspase-3 activity was measured by colorimetry. 
Human BC cells were inoculated in 24-well plates 
(1000 cells/well) and incubated for 24 h in DMEM 
(Multicell) with 10% fetal calf serum, after which 
RHAMM-selective peptides were added (4 μl, 100 
μl/well) to the cells and incubated (24 h, 37oC). Con-
trol cultures were incubated in growth medium with 
10% serum. Caspase-3 activity was measured with 
Caspase-3 Colorimetric Assay Kit (GenScript). Acti-
vation of caspase-3 was evaluated by cleavage of the 
caspase-3-specifi c colorimetric substrate (DEVD-p-ni-
troanilide). Optical density of each well was measured 
using a Wallac 1420 multirow counter (Perkin Elmer) 
at 405 nm. The data were presented as the means of 3 
repeated experiments.

The data were statistically processed by Graph-
PadPrizm software (one-way ANOVA). The differ-
ences were considered signifi cant at p<0.05.

RESULTS

All three peptides inhibited the growth of tumor cell 
cultures (Fig. 1, a). Incubation with the peptides for 

48 h suppressed cell viability by 50%. It should be 
noted that viability of BC cell cultures was effectively 
suppressed by RHAMM inhibitors in low concentra-
tions, a true advantage of these peptides as prospective 
antitumor drugs.

Fig. 1. Effects of RHAMM-selective peptides on MDA-MB-231 cell 

survival (a), apoptosis (b), and necrosis (c). Here and in Fig. 3: 

***p<0.001 in comparison with the control.
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Fig. 2. Effects of RHAMM-selective peptides on fibroblast apoptosis (a) and necrosis (b).

Fig. 3. Effects of RHAMM-selective peptides on RHAMM–/– fibro-

blast apoptosis (a) and necrosis (b) and caspase-3 activity (c) in 

MDA-MB-231 cells.

As cell survival was significantly reduced by 
RHAMM-selective peptides, it was essential to iden-
tify the MDA-MB-231 cell death type.  RHAMM in-
hibitors in a concentration of 10 μg/ml (2×10–7 M), 
especially peptides Nos. 37 and 40, 4-5-fold increased 
apoptosis induction in the cells (Fig. 1, b). These re-

sults suggest that RHAMM inhibitors were involved in 
apoptosis pathways in MDA-MB-231 cells. Necrotic 
death of MDA-MB-231 cells was increased signifi -
cantly (approximately 4-fold) by peptides Nos. 37 and 
40 (Fig. 1, c). In order to verify the selective effects 
of the peptides on tumor cells, we studied the effects 
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of RHAMM inhibitors on apoptosis and necrosis of 
normal fi broblasts. RHAMM-selective peptides caused 
virtually no changes in apoptosis and necrosis of nor-
mal cells (Fig. 2, a, b). All three peptides caused in 
fact no changes in fi broblast (RHAMM–/–) apoptosis 
and necrosis (Fig. 3, a, b). These results confi rmed 
that the effects of RHAMM-selective peptides were 
tumor-specifi c and RHAMM-mediated. These fi nd-
ings suggest that RHAMM-selective peptides in low 
concentrations induced death of breast cancer cells 
(MDA-MB-231) within 24 h after their addition.

Activity of caspase-3 increased by 30% in MDA-
MB-231 cells in comparison with intact cells (Fig. 3, 
c). These data confi rmed the involvement of caspase-3 
in cancer cell apoptosis induction, as all three peptides 
stimulated signifi cantly its activity.

Hence, RHAMM-selective peptides inhibit the 
viability and induce apoptosis and necrosis of breast 
cancer cells. These data suggest the use of RHAMM-
selective peptides for target therapy for cancer, as they 
are tumor cell-specifi c and easily synthesized.
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