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Extensive chaos in the Nikolaevskii model
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We carry out a systematic study of a different type of chaos at onset~‘‘soft-mode turbulence’’! based on
numerical integration of the simplest one-dimensional model. The chaos is characterized by a smooth interplay
of different spatial scales, with defect generation being unimportant. The Lyapunov exponents are calculated
for several system sizes for fixed values of the control parametere. The Lyapunov dimension and the
Kolmogorov-Sinai entropy are calculated and both shown to exhibit extensive and microextensive scaling. The
distribution functional is shown to satisfy Gaussian statistics at small wave numbers and small frequency.
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Spatiotemporal chaos~STC! is a subject of considerabl
experimental and theoretical importance and occurs i
wide variety of driven, dissipative systems@1–3#. Such cha-
otic behavior in spatially extended systems is extremely
ficult to characterize quantitatively, as the dynamics involv
a large number of degrees of freedom. The most comm
and useful tool for the characterization of chaos is given
the Lyapunov exponents$l i%. Knowledge of this Lyapunov
spectrum permits one to estimate the number of effec
degrees of freedom of the system~i.e., the dimension of the
attractor!, using for example the Kaplan-Yorke@4# formula
for the Lyapunov dimensionD(L), where L is the linear
system size. It also permits one to test the important con
of extensivity of chaos, defined as the case in wh
limL→` D(L);Ld, whered is the spatial dimension of th
system@1,5#. An interpretation of extensive chaos is that t
whole system can then be thought of in some sense as
union of almost independent subsystems. This was origin
proposed by Ruelle@6#, who argued that widely separate
subsystems of a turbulent system should be weakly co
lated, so that the spectrum of Lyapunov exponents would
the union of exponents associated with each of the s
systems. The question is closely related to the fundame
problem of ergodicity of nonequilibrium systems. If th
chaos is extensive and each subsystem evolves in time p
tically independently of the others, then in a steady~nontran-
sient! chaotic state the time average is equivalent to the
semble average and the system should be ergodic. M
work has focused on attempting to characterize spatiotem
ral dynamics in these terms~see, e.g.,@7–11#!. However, in
spite of the fundamental importance of the question pra
cally all the results are related just to a few discrete coup
map lattices@12–14# and two continuous systems, name
the complex Ginzburg-Landau~CGL! and Kuramoto-
Sivashinsky~KS! equations~see, e.g., Refs.@13,15,16#!. This
is partly due to the computational complexity of the proble
but primarily to the lack of simple models exhibiting th
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requisite chaotic behavior. It would therefore be of consid
able interest to characterize quantitatively other types
STC.

Recently attention was drawn to the existence of a n
wide class of systems displaying such a behavior@17–20#.
Their properties are qualitatively different from those of t
CGL and KS models. In contrast to both these models
chaos is associated with smooth, random long-wavelen
modulations of a short-wavelength pattern, with defect g
eration being unimportant. The short-wavelength patt
arises due to a single supercritical bifurcation of the Tur
type such as occurs in Rayleigh-Be´nard convection. The
long-wavelength modes belong to a Goldstone branch of
spectrum originated in a broken continuous symmetry. T
symmetry makes the system degenerate to the extent
instead of a single, unique spatially uniform state, it ha
continuous familyof equivalent spatially uniform states
which may be obtained from each other by the symme
transformation. This symmetry, which is additional to t
trivial groups of translations and rotations, can be one
many different types. For this reason the STC in question
quite a common phenomenon and occurs, for example
electroconvection in liquid crystals@17,18#, in convection in
a fluid with stress-free boundary conditions@21–24#, etc.;
see Ref.@20# for further discussion. The chaos observed
such cases may be interpreted as a macroscopic dynam
analog of second-order phase transitions, where the o
parameter is related to the amplitudes of turbulent mod
Due to this analogy it has been calledsoft-mode turbulence
~SMT! @18#. The simplest model exhibiting SMT was intro
duced by Nikolaevskii@25,26# to describe longitudinal seis
mic waves in viscoelastic media. In what follows we explo
the simplicity of this model to shed light on general featur
of this different type of STC.

We present a detailed systematic study of the Nikol
vskii model, including calculation of the Lyapunov expo
nents, fractal dimension, etc. We show that the Lyapun
dimension and Kolmogorov-Sinai entropy are extens
quantities, which supports the validity of the Ruelle’s ide
for SMT. We also show that the power spectrum can
R17 ©2000 The American Physical Society



a
e

al

n

e

n

-
e

ith
un
o
on
.
fie

s
ns

l

-
lt

th
t

ica
C

m

ctr
in

s
je
ra
om

um

n,

ic
g

er
ity

n

l,

any
as a
se,
ys-

or-
e of

ec-
lts
o-

has

r
t to

RAPID COMMUNICATIONS

R18 PRE 62XI, TORAL, GUNTON, AND TRIBELSKY
described by Gaussian statistics for small wavenumbers
frequencies, in agreement with a general argument of Hoh
berg and Shraiman@5#.

The model is defined by the following partial differenti
equation for the real scalar fieldv(x,t) ~longitudinal mode of
the displacement velocity in the original formulatio!
@25,26#:

]v
]t

1
]2

]x2 F e2S 11
]2

]x2D 2Gv1v
]v
]x

50, ~1!

with 0<x<L and periodic boundary conditions. This mod
has two control parameters,e ~the distance from onset! and
L, in contrast to, e.g., the KS model, where the only no
trivial control parameter is the system sizeL. An essential
feature of the model is that even at smalle it cannot be
reduced to anye-free form@20,27#, which makes the hierar
chy of characteristic scales much more complex than thos
the KS and CGL models@28,29#. Equation~1! may be re-
garded as a generalized Burgers equation and shares w
the same group of symmetry, namely, trivial symmetries
der shifts of the spatiotemporal coordinate system, and n
trivial invariance with respect to the Galilean transformati
v(x,t)→v(x2vot,t)1vo , wherevo is an arbitrary constant
The Galilean invariance plays the role of the above speci
additional symmetry, generating for Eq.~1! the continuous
family of solutionsv5vo . The Nikolaevskii equation admit
a continuous set of spatially periodic, stationary solutio
whose instability has been proved analytically@28#. Com-
puter simulations@19# of an equivalent version of this mode
for an order parameteru(x,t)[*v(x,t)dx showed that even
at extremely smalle51024, the system exhibits STC. How
ever, this simulation did not provide any quantitative resu
about the STC. The only result of this kind is in Ref.@30#, in
which just a single quantitative characteristic, namely,
dependence of the mean amplitude of chaotic patterns on
control parameter, was studied. In this Rapid Commun
tion we span the gap in our knowledge of this type of ST
providing a detailed quantitative description of its most i
portant properties based on numerical integration of Eq.~1!.
The simulations were carried out using the pseudospe
method combined with a fourth-order predictor-corrector
tegrator, for several different values ofL and two values ofe
~0.2 and 0.5, respectively! @31#. The Lyapunov exponent
were calculated by linearizing the equation along the tra
tory, performing a reorthonormalization after a few integ
tion steps to prevent the largest Lyapunov exponent fr
swamping all the others@32#. A typical patternv(x,t) as a
function of space and time in the steady chaotic regime
shown in Fig. 1. The time averaged power spectr

^uv̂(k)u2& obtained over a time period ofT5104 for system
sizeL578 with e50.2 is shown in Fig. 2. As can be see
the dominant modes occur in the vicinity ofk561. Note,
however, the smaller peak near zero wave number, wh
arises from coupling between unstable short-wavelen
modes centered aboutk561 and the slowly decaying
modes from the Goldstone branch of the spectrum cent
at k50 ~using terminology based upon the linear stabil
analysis of the spatially uniform solution!. The power spec-
trum for û(k)5 v̂(k)/ ik ~shown in the inset in Fig. 2! has the
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dominant peak neark50, as was originally demonstrated i
@19#. One would also expect on general grounds@5# each
Fourier transform variable v̂(k,v) to be governed
by a Gaussian probability distribution functiona
exp@2D„uv̂(k,v)u2

…#, for small k and v. We have verified
this for several values ofk and v by fitting the probability
distribution for the variablez[uv̂(k)u2 to an exponential
form: f (z)5De2Dz. For instance, in the particular caseL
578, e50.5, we obtain a good fit forv50.6, k51.5 by
usingD'47.

As has already been emphasized, the key question for
system exhibiting STC is whether it can be represented
union of weakly correlated subsystems. If this is the ca
then the spectrum of Lyapunov exponents for the entire s
tem should beintensivein the sense thatl i is a function only
of the intensive indexi /V, i.e., l i5 f ( i /V), whereV stands
for the volume of the system@3#. The question is not trivial
for the type of STC considered here, because of the imp
tance of the long-wavelength modes and the divergenc
the two point correlation lengthj2 @33# as e→0 @20#. To
answer this question, a detailed study of the Lyapunov sp
trum for the Nikolaevskii model was conducted. The resu
are shown in Fig. 3 where the number of Lyapunov exp
nents greater than a particular valuel i , scaled by the system
size L, is plotted versusl i for e50.5. A similar curve is

FIG. 1. Typical space-time configuration forv(x,t) in the
steady chaotic regime is shown here. The configuration shown
evolved from random initial condition within a system sizeL578
ande50.5.

FIG. 2. Time average power spectra^uv̂(k)u2& and ^uû(k)u2& in
k-space are plotted. The system size isL578 and control paramete
e50.2. Note that the power spectrum has symmetry with respec
k→2k.
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found at e50.2, but the maximum positive eigenvalue
now smaller ~one expects this eigenvalue to vanish ase
→0.! The intensive nature of the Lyapunov density is e
dent. In this case, one also expects the fractal dimen
D(L) of an attractor to be extensive for large enoughL ~ex-
tensive chaos!, as was first shown by Manneville@15# for
chaotic solutions of the Kuramoto-Sivashinsky equation.
have checked this for the Nikolaevskii model using t
Kaplan-Yorke formula@4# for the Lyapunov dimension,

D~L !5K1
1

ulK11u (
i 51

K

l i , ~2!

where the integerK is the largest integer such that the sum
the first K Lyapunov exponents is non-negative. We ha
also calculated the Kolmogorov-Sinai entropyH(L) from
the definition

H~L !5(
i 51

i 1

l i , ~3!

where the sum is over the positive Lyapunov exponents.
Kolmogorov-Sinai entropy@32# is a measure of the mea
rate of information production in a system, or the mean r
of growth of uncertainty in a system subjected to small p
turbations. We find that for large enoughL both D(L) and
H(L) are extensive. Our results for the Lyapunov dimens
D(L) are shown in Fig. 4 fore50.5. The same behavior i
found at e50.2, but with a different slope~naturally the
slope of the straight lineD(L) at e50.2 is smaller than tha
at e50.5). In addition, we find that the upper indexi 1 in Eq.
~3!, which corresponds to the smallest positive Lyapun
exponent, is also proportional toL.

The important characteristic of STC is the dimension c
relation lengthjd @1,3#. This length is defined asjd[d21/d,
whered[ limL→` D(L)/Ld. It can be thought of as the ‘‘ra
dius’’ of a volume that contains one degree of freedom,
as the linear size of the subsystem described above.
value of this dimension correlation length for Eq.~1! is jd
53.0 fore50.5 andjd53.3 fore50.2. In contrast tojd the

FIG. 3. HereN. i is the number of Lyapunov exponents grea
than a particular valuel i . We plot N. i /L ~scaled by the system
sizeL) vs l i in the casee50.5.
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above-mentioned two point correlation lengthj2 governs the
spatial decay of the correlation function. In general these
lengths are different@3#. We found thatj2>4.9 for the Ni-
kolaevskii model ate50.5 andj2>5.6 ate50.2.

The use of periodic boundary conditions ensures that
dynamics observed is not influenced by the boundaries
hence, in some sense, it is intrinsic to the system. Also, fo
large enough system size, periodic boundary conditions
proximate the thermodynamic limit of infinite size and ha
been used previously in many other similar stud
@34,16,15#. It would be interesting to analyze the finite siz
effects introduced by the use of other types of boundary c
ditions, such as rigid-rigid. However, the fact that in all cas
considered here the system size is much larger than an
the correlation lengths obtained, suggests to us that sim
results would be obtained with other boundary conditions

Finally, Tajima and Greenside@35# have recently found
for the one dimensional Kuramoto-Sivashinsky model t
D(L) is also ‘‘microextensive.’’ Namely, they found that
one increasesL by a small amountdL, with dL!jd (dL
50.8 in our simulation!, one finds thatD(L) satisfies the
same linear relationship as that characterizing exten
chaos. We have examined this for two different domains oL
for our model and found that microextensivity holds for bo
D(L) andH(L). Our results for microextensivity forD(L)
are shown in the inset in Fig. 4.

In conclusion, our detailed study of this type of ST
based on the numerical integration of the Nikolaevskii mo
shows that for sufficiently large system size the chaos is b
extensive and microextensive. We also found that the sys
satisfies Gaussian statistics at sufficiently small wave nu
bers and frequencies. We believe these results are quite
eral and reflect intrinsic features of this type of STC, rath
than specific peculiarities of the model.

There are several interesting questions to investigate
the limit e→0, including the dependence of quantities su
as the correlation lengths and Lyapunov exponents one as

r

FIG. 4. Lyapunov dimensionD(L) vs system sizeL for e
50.5. dL515.5 for extensive, anddL50.8 for microextensive.
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well as the possible scaling of the power spectrum. T
study is in progress and will be reported elsewhere.
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