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We carry out a systematic study of a different type of chaos at dtiseft-mode turbulence) based on
numerical integration of the simplest one-dimensional model. The chaos is characterized by a smooth interplay
of different spatial scales, with defect generation being unimportant. The Lyapunov exponents are calculated
for several system sizes for fixed values of the control parametéfhe Lyapunov dimension and the
Kolmogorov-Sinai entropy are calculated and both shown to exhibit extensive and microextensive scaling. The
distribution functional is shown to satisfy Gaussian statistics at small wave numbers and small frequency.

PACS numbefs): 05.45-a, 47.20.Ky, 47.27.Eq, 47.52]

Spatiotemporal chao&STC) is a subject of considerable requisite chaotic behavior. It would therefore be of consider-
experimental and theoretical importance and occurs in able interest to characterize quantitatively other types of
wide variety of driven, dissipative systerfls—3]. Such cha- STC.
otic behavior in spatially extended systems is extremely dif- Recently attention was drawn to the existence of a new
ficult to characterize quantitatively, as the dynamics involvesvide class of systems displaying such a behajiat—24.

a large number of degrees of freedom. The most commoitheir properties are qualitatively different from those of the
and useful tool for the characterization of chaos is given byCGL and KS models. In contrast to both these models the
the Lyapunov exponents\;}. Knowledge of this Lyapunov chaos is associated with smooth, random long-wavelength
spectrum permits one to estimate the number of effectivenodulations of a short-wavelength pattern, with defect gen-
degrees of freedom of the systdie., the dimension of the eration being unimportant. The short-wavelength pattern
attractoy, using for example the Kaplan-YorKkd] formula  arises due to a single supercritical bifurcation of the Turing
for the Lyapunov dimensio (L), wherelL is the linear type such as occurs in Rayleigh#Bed convection. The
system size. It also permits one to test the important concepong-wavelength modes belong to a Goldstone branch of the
of extensivity of chaos, defined as the case in whichspectrum originated in a broken continuous symmetry. The
lim,_..D(L)~LY whered is the spatial dimension of the symmetry makes the system degenerate to the extent that
system[1,5]. An interpretation of extensive chaos is that theinstead of a single, unique spatially uniform state, it has a
whole system can then be thought of in some sense as tlwntinuous familyof equivalent spatially uniform states,
union of almost independent subsystems. This was originallyvhich may be obtained from each other by the symmetry
proposed by Ruell¢6], who argued that widely separated transformation. This symmetry, which is additional to the
subsystems of a turbulent system should be weakly corrdrivial groups of translations and rotations, can be one of
lated, so that the spectrum of Lyapunov exponents would beany different types. For this reason the STC in question is
the union of exponents associated with each of the subguite a common phenomenon and occurs, for example, in
systems. The question is closely related to the fundamenta&lectroconvection in liquid crysta[d47,18, in convection in
problem of ergodicity of nonequilibrium systems. If the a fluid with stress-free boundary conditiof3d1-24, etc.;
chaos is extensive and each subsystem evolves in time prasee Ref[20] for further discussion. The chaos observed in
tically independently of the others, then in a steé@dgntran-  such cases may be interpreted as a macroscopic dynamical
sien) chaotic state the time average is equivalent to the enanalog of second-order phase transitions, where the order
semble average and the system should be ergodic. Mugbarameter is related to the amplitudes of turbulent modes.
work has focused on attempting to characterize spatiotemp®ue to this analogy it has been calledft-mode turbulence
ral dynamics in these ternisee, e.g.[7—11]). However, in  (SMT) [18]. The simplest model exhibiting SMT was intro-
spite of the fundamental importance of the question practiduced by Nikolaevski[25,26] to describe longitudinal seis-
cally all the results are related just to a few discrete couplednic waves in viscoelastic media. In what follows we exploit
map lattices[12—14 and two continuous systems, namely, the simplicity of this model to shed light on general features
the complex Ginzburg-LandauCGL) and Kuramoto- of this different type of STC.
Sivashinsky(KS) equationgsee, e.g., Ref$13,15,18). This We present a detailed systematic study of the Nikolae-
is partly due to the computational complexity of the problemvskii model, including calculation of the Lyapunov expo-
but primarily to the lack of simple models exhibiting the nents, fractal dimension, etc. We show that the Lyapunov
dimension and Kolmogorov-Sinai entropy are extensive
quantities, which supports the validity of the Ruelle’s ideas
*Permanent address. for SMT. We also show that the power spectrum can be
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described by Gaussian statistics for small wavenumbers an
frequencies, in agreement with a general argument of Hohen
berg and Shraimafb].

The model is defined by the following partial differential
equation for the real scalar field x,t) (longitudinal mode of
the displacement velocity in the original formulatjon
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with 0O=<x=<L and periodic boundary conditions. This model ~ FIG. 1. Typical space-time configuration far(x,t) in the

has two control parameters, (the distance from onseand steady chaotic regime.is. §h0wn hgre. T.he. configuration shown has
L, in contrast to, e.g., the KS model, where the only nor1_evo|ved from random initial condition within a system size-78
trivial control parameter is the system sike An essential ande=0.5.

feature of the model is that even at smallit cannot be

reduced to any-free form[20,27], which makes the hierar- dominant peak nedt=0, as was originally demonstrated in
chy of characteristic scales much more complex than those i9]. One would also expect on general grourg$ each

the KS and CGL model§28,29. Equation(1) may be re- Fourier transform variablev(k,w) to be governed
garded as a generalized Burgers equation and shares withby a Gaussian probability distribution functional,

the same group of symmetry, namely, trivial symmetries Unexd —D(|o(k,w)|?)], for smallk and . We have verified

der shifts of the spatiotemporal coordinate system, and nof;s for several values df and w by fitting the probability
trivial invariance with respect to the Galilean tranSformat'ondistribution for the variablezz|z3(k)|2 to an exponential

v(x)—v(X=vol, 1) +vo, Wherev, is an arbitrary constant. - g . f(z)=De PZ For instance, in the particular cake
The Galilean invariance plays the role of the above speciﬁed:D 78. =05 we 6btain a qood ’fit for=06. k=15 b
additional symmetry, generating for E(L) the continuous using:]D%4.7, g o = by

e oot Sty e o Aot s has aleady ben emphasized, he key uesion forany
. I~ P yp C o y system exhibiting STC is whether it can be represented as a
whose instability has been proved analyticdl®8]. Com- : f K lated sub If this is th
uter simulation$19] of an equivalent version of this model union of weakly correlated subsystems. If this s t & case,
1E)or an order parameter(x,t) = fv (x.t)dx showed that even then the spectrum of Lyapunov exponents for the entire sys-
at extremel psmalkzlo“,‘ tﬁe l; s:[em exhibits STC. How- tem should béntensivein the sense that; is a function only
y ' M ) of the intensive index/V, i.e., \j=f(i/V), whereV stands

ever, this simulation did not provide any quantitative results]c S -
G AT . or the volume of the systeff8]. The question is not trivial
about the STC. The only result of this kind is in RE0l, in for the type of STC considered here, because of the impor-

which just a single quantitatiye characterisf[ic, namely, th‘%ance of the long-wavelength modes and the divergence of
dependence of the mean amplitude of chaotic patterns on tr{ﬁe two point correlation lengtli, [33] as e—0 [20]. To

control parameter, was studied. In this Rapid Communicat-answer this auestion. a detailed studv of the LVapunov Spec-
tion we span the gap in our knowledge of this type of STC q ' y yap P

o . o e . . ~trum for the Nikolaevskii model was conducted. The results
providing a detailed quantitative description of its most im-

) SO . are shown in Fig. 3 where the number of Lyapunov expo-

portant properties based on numerical integration of (Eq. .

. : . . ents greater than a particular valug scaled by the system
The simulations were carried out using the pseudospectrfg\ize L is plotted versus. for e=0.5. A similar curve is
method combined with a fourth-order predictor-corrector in- 5P : €=y
tegrator, for several different values lofand two values o€
(0.2 and 0.5, respectively{31]. The Lyapunov exponents
were calculated by linearizing the equation along the trajec-

0.025

tory, performing a reorthonormalization after a few integra- 0.02
tion steps to prevent the largest Lyapunov exponent from
swamping all the otherg32]. A typical patternv(x,t) as a 0.015 |

function of space and time in the steady chaotic regime is<w)2
shown in Fig. 1. The time averaged power spectrum

{|v(k)|?) obtained over a time period &=10" for system
sizeL=78 with e=0.2 is shown in Fig. 2. As can be seen,
the dominant modes occur in the vicinity kf= =1. Note,
however, the smaller peak near zero wave number, whict
arises from coupling between unstable short-wavelengtr 0
modes centered abol==*1 and the slowly decaying

modes from the Goldstone branch of the spectrum centered FIG. 2. Time average power spectfia (k)|2) and(|a(k)|?) in

at k:Q (using term!nology_ based up_on the linear stability k-space are plotted. The system sizé is78 and control parameter
anaIyS|sAof theAspatlaIIy uniform solutipnThe power spec- .0 2. Note that the power spectrum has symmetry with respect to
trum for u(k) =v (k)/ik (shown in the inset in Fig.)2has the  k— —k.
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FIG. 3. HereN-; is the number of Lyapunov exponents greater . . . . . . . . .
than a particular valua;. We plotN-;/L (scaled by the system 00 20 40 60 8 100 120 140 160 180 200
sizel) vs \; in the casee=0.5. L

FIG. 4. Lyapunov dimensioD(L) vs system sizel for e

) N ) ~ =0.5. 6L=15.5 for extensive, andL =0.8 for microextensive.
found ate=0.2, but the maximum positive eigenvalue is

now smaller(one expects this eigenvalue to vanish as

—0.) The intensive nature of the Lyapunov density is evi- b tioned t int lation | th
dent. In this case, one also expects the fractal dimensiof°0Ve-Mentioned two paint correlation engthgoverns the

D(L) of an attractor to be extensive for large enougfex- spatial decay.of the correlation function. In general thes.e two
tensive chads as was first shown by Mannevillds] for ~ 'engths are differen3]. We found that¢;=4.9 for the Ni-
chaotic solutions of the Kuramoto-Sivashinsky equation. wekolaevskii model a&=0.5 and¢,=5.6 ate=0.2.
have checked this for the Nikolaevskii model using the The use of periodic boundary conditions ensures that the
Kaplan-Yorke formulg4] for the Lyapunov dimension, dynamics observed is not influenced by the boundaries and
hence, in some sense, it is intrinsic to the system. Also, for a
1 large enough system size, periodic boundary conditions ap-
Neeal 21 A, ) proximate the thermodynamic limit of infinite size and have
been used previously in many other similar studies

where the integeK is the largest integer such that the sum of[34,16,13. It would be interesting to analyze the finite size
the first K Lyapunov exponents is non-negative. We haveeffects introduced by the use of other types of boundary con-
also calculated the Kolmogorov-Sinai entropy(L) from  ditions, such as rigid-rigid. However, the fact that in all cases
the definition considered here the system size is much larger than any of
the correlation lengths obtained, suggests to us that similar
'* results would be obtained with other boundary conditions.
H(L):Zl Ais 3 Finally, Tajima and Greensidig5] have recently found
- for the one dimensional Kuramoto-Sivashinsky model that
where the sum is over the positive Lyapunov exponents. ThE (L) is also “microextensive.” Namely, they found that if
Kolmogorov-Sinai entropy32] is a measure of the mean one increased by a small amountsL, with SL<¢s(6L
rate of information production in a system, or the mean rate=0.8 in our simulatiop one finds thatD(L) satisfies the
of growth of uncertainty in a system subjected to small persame linear relationship as that characterizing extensive
turbations. We find that for large enoughboth D(L) and  chaos. We have examined this for two different domainis of
H(L) are extensive. Our results for the Lyapunov dimensiorfor our model and found that microextensivity holds for both
D(L) are shown in Fig. 4 foe=0.5. The same behavior is D(L) andH(L). Our results for microextensivity fab (L)
found at e=0.2, but with a different slopénaturally the are shown in the inset in Fig. 4.
slope of the straight lin® (L) at e=0.2 is smaller than that In conclusion, our detailed study of this type of STC
ate=0.5). In addition, we find that the upper indiexin Eq.  based on the numerical integration of the Nikolaevskii model
(3), which corresponds to the smallest positive Lyapunowshows that for sufficiently large system size the chaos is both
exponent, is also proportional ta extensive and microextensive. We also found that the system
The important characteristic of STC is the dimension cor-satisfies Gaussian statistics at sufficiently small wave num-
relation lengthé 5 [1,3]. This length is defined ag;= 6"/, bers and frequencies. We believe these results are quite gen-
wheres=lim,__.. D(L)/LY It can be thought of as the “ra- eral and reflect intrinsic features of this type of STC, rather
dius” of a volume that contains one degree of freedom, orthan specific peculiarities of the model.
as the linear size of the subsystem described above. The There are several interesting questions to investigate in
value of this dimension correlation length for EQ) is é&s  the limit e—0, including the dependence of quantities such
=3.0 fore=0.5 and¢s=3.3 fore=0.2. In contrast t&sthe  as the correlation lengths and Lyapunov exponents @is

K

D(L)=K+
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well as the possible scaling of the power spectrum. ThisGrant-in-Aid for Scientific ResearctNo. 11837005 from
study is in progress and will be reported elsewhere. the Ministry of Education, Science, Sports and Cult(la-
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