Математическое моделирование, численные методы в фундаментальных задачах наукиНИР

Mathematical modeling, numerical methods in fundamental problems of science

Соисполнители НИР

МГУ имени М.В.Ломоносова Координатор

Источник финансирования НИР

госбюджет, раздел 0110 (для тем по госзаданию)

Этапы НИР

# Сроки Название
1 1 января 2021 г.-31 декабря 2021 г. Математическое моделирование, численные методы и вычислительный эксперимент в фундаментальных задачах
Результаты этапа: Проведен детальный анализ нового однопараметрического семейства адаптивных симплектических консервативных численных методов для решения задачи Кеплера. Методы осуществляют симплектическое отображение начального состояния в текущее состояние и, в следствие этого, сохраняют фазовый объем. В отличие от существующих симплектических методов они сохраняют в рамках точной арифметики все присущие задаче первые интегралы. Переменный шаг интегрирования выбирается автоматически исходя из локальных свойств решения задачи. Методы аппроксимируют зависимость фазовых переменных от времени либо со вторым, либо с четвертым порядком в зависимости от значения параметра. Установлены пределы числа расчетных точек на период решения, обеспечивающих определенный порядок точности. Применение квазиакустической схемы для численного решения двухслойных уравнений мелкой воды над ровным и неровным дном в одномерном случае. Реализация квазиодномерного варианта квазиакустической схемы для расчета двухмерных течений в сложных областях в приближении мелкой воды. Получена случайная микроскопическая модель динамики стационарных биологических сообществ. Построен двумерный разрывный метод частиц с новым корректор-этапом перестройки частиц, основанный не на их форме, а на распределении массы между их центрами. Исследованы возможные способы квазиодномерной криволинейной реконструкции для многомерных разностных схемах газовой динамики на неструктурированных сетках, показана их эффективность. Проведены исследования по нахождению оптимального граничного сигнала для доставки вещества в заданную область неоднородной пористой среди с анизотропной диффузией и с учетом эффектов сорбции-десорбции. Исследованы спектральные характеристики пульсовой волны в большом круге кровообращения для различных нарушений кровотока. Осуществлен цикл исследований по применению нейросетей к диагностике патологий кровеносной системы на основе результатов прямого моделирования течения крови в замкнутой сердечно-сосудистой системе. Разработан алгоритм календарного планирования для решения задачи управления производством в частном случае. Подготовлен вычислительный алгоритм и проведено исследование модели сверхпроводниковой микросхемы нейрона. Разработан алгоритм моделирования SFN (сверхпроводник-ферромагнетик-нормальный металл) микророструктур на основе нелинейной модели для тока проводимости и метода конечных элементов для разрывных решений. Изучался метод граничных элементов для неоднородных контрастных структур. Показана двойственность законов сохранения и их роль в эволюционных процессах. Описаны особенности реализации Гамильтоновых систем и показана их роль в различных математических и физических формализмах. Показана связь уравнений теории поля с уравнениями математической физики. Исследованы скрытые инвариантные и дискретные свойства уравнений математической физики, позволяющие описывать дискретные процессы. Исследованы особенности численного моделирования уравнений математической физики, описывающих дискретные процессы.
2 1 января 2022 г.-31 декабря 2022 г. Математическое моделирование, численные методы и вычислительный эксперимент в фундаментальных задачах
Результаты этапа: Исследованы некоторые параметризации решений задачи Коши для гамильтоновых уравнений с целью создания алгоритмов автоматического выбора шага при решении "жестких" задач для гамильтоновых уравнений. Проведены вычислительные эксперименты по исследованию сложных движений маятника Капицы на основе лагранжевой и гамильтоновой форм уравнений движения. Экспериментально установлены элементы параметрического портрета. Продолжено построение математической формализации (стохастической и детерминированной) иерархических систем и её численной реализации с помощью новых методов частиц. Выполнено применение квазиакустической схемы для расчёта неустойчивых газодинамических течений, а также применение квазиакустической схемы для расчёта газодинамических течений, сопровождающих ветры боры в городе Новороссийске. Построена и верифицирована новая балансно-характеристическая схема интерполяционного типа для одномерных уравнений переноса, Хопфа и мелкой воды. Построен и верифицирован балансно-характеристический метод для решения двумерных задач fluid-structure interaction. Построен и исследован неявный метод КАБАРЕ для гиперболизованного уравнения теплопроводности, доказана устойчивость схемы, проведены тестовые расчеты. Построено и верифицировано на модельных задачах обобщение схемы КАБАРЕ для двумерных уравнений мелкой воды на неструктурированные сетки с треугольными ячейками. Проведена серия многомерных расчетов течений вязкого газа в пространстве между двумя коаксиально вращающимися цилиндрами в изотермическом приближении. На основе численного решения двумерных уравнениях газовой динамики в переменных Эйлера с учетом гравитации проведено моделирование развития турбулентных атмосферных процессов, сопутствующих ветрам бора. Параметры рассматриваемой математической модели характерны для бухты Новороссийска, где при боре наблюдаются порывы ветра ураганной силы, зачастую приводящие к катастрофическим последствиям. Продемонстрирована принципиальная возможность возведения инженерных сооружений, позволяющих значительно понизить интенсивность порывов ветра. Проведены исследования применения методов искусственного интеллекта к результатам математического моделирования гемодинамики человека и показано, что использование простых нейросетевых технологий позволяет выделять участи патологий кровотока. В первом приближении построены детализации моделей кровотока в печени и почке. Проведены исследования спектральных характеристик пульсовой волны в модели большого круга кровообращения. Проведены численные эксперименты функционирования сердечно-сосудистой системы при поступлении пероральной глюкозной нагрузки, которая соответствует тесту толерантности к глюкозе. Данное лабораторное исследование используется для диагностики нарушений усвоения глюкозы, в том числе сахарного диабета и предиабета. Полученные при математическом моделировании результаты качественно согласуются с клиническими данными, имеющимися в современной медицинской литературе. Для дальнейшего развития функционала интерфейсного модуля программного комплекса CVSS существенно модифицирована подсистема хранения данных, что позволяет расширить набор параметров трехмерного графа сосудистой системы. При этом обеспечена совместимость форматов файлов данных существующих и расширенных моделей графов. Разработаны новые вычислительные алгоритмы и программа вычисления индуктивных коэффициентов нормальных и сверхпроводниковых структур. Разработан конечноэлементный алгоритм и его программная реализация модели глобальной электрической цепи атмосферы земли. Разработан численный алгоритм для модели Узаделя с разрывными решениями. Выполнена постановка граничных условий в задаче теплового баланса алюминиевого электролизера. Разработан алгоритм вычисления теплового потока на боковой поверхности электролизной ванны.
3 1 января 2023 г.-31 декабря 2023 г. Математическое моделирование, численные методы и вычислительный эксперимент в фундаментальных задачах
Результаты этапа:
4 1 января 2024 г.-31 декабря 2024 г. Математическое моделирование, численные методы и вычислительный эксперимент в фундаментальных задачах
Результаты этапа:
5 1 января 2025 г.-31 декабря 2025 г. Математическое моделирование, численные методы и вычислительный эксперимент в фундаментальных задачах
Результаты этапа:

Прикрепленные к НИР результаты

Для прикрепления результата сначала выберете тип результата (статьи, книги, ...). После чего введите несколько символов в поле поиска прикрепляемого результата, затем выберете один из предложенных и нажмите кнопку "Добавить".

Прикрепленные файлы


Имя Описание Имя файла Размер Добавлен