Исследование обратных задач математической физики и разработка численных методов их решенияНИР

Studying inverse problems of mathematical physics and developing numerical methods to solve them

Соисполнители НИР

МГУ имени М.В. Ломоносова Координатор

Источник финансирования НИР

госбюджет, раздел 0110 (для тем по госзаданию)

Этапы НИР

# Сроки Название
1 1 января 2016 г.-31 декабря 2016 г. Исследование обратных задач математической физики и разработка численных методов их решения
Результаты этапа: Исследованы обратные задачи для уравнения теплопроводности, обратная задача частотного зондирования слоистой среды полем вертикального магнитного диполя, обратные задачи рассеяния для системы уравнений акустики и волнового уравнения акустики в двумерном и трехмерном случаях, обратная коэффициентная задача для системы уравнений в частных производных. Изучены различные аспекты корректности их решения. Разработаны численные методы определения нескольких неизвестных границ в задачах электроимпедансной томографии, предложен метод устойчивого решения обратной задачи частотного зондирования.Разработан алгоритм решения обратных задач рассеяния для уравнения акустики и уравнения типа Клейна-Гордона. Созданы численные методы решения обратных задач для математических моделей, описывающих процессы возбуждения сердца. Разработан математический метод повышения резкости трехмерных офтальмологических изображений.
2 1 января 2017 г.-31 декабря 2017 г. Исследование обратных задач математической физики и разработка численных методов их решения
Результаты этапа: Поставлена обратная задача для гиперболического уравнения с данными на характеристиках. Неизвестная функция зависит от пространственной переменной и входит как в коэффициент уравнения, так и в данные на характеристике. Для определения неизвестного коэффициента используется динамическая дополнительная информация о решении задачи с данными на характеристиках. Доказаны теоремы существования и единственности решения обратной задачи. Исследована система нелинейных интегральных уравнений, возникающая при решении задачи определения неизвестных функций в функционально-дифференциальном гиперболическом уравнении. Предложены численные методы определения начального условия в задачах Коши для гиперболического уравнения с малым параметром при старшей производной. В качестве дополни-тельной информации для решения обратной задачи используется решение задачи Коши, заданное при x=0, как функция от времени. Проведены численные расчёты, иллюстрирующие возможности предложенных методов. Исследована обратная задача рассеяния в слоистой акустической среде с поглощением. Доказана единственность восстановления акустического импеданса и коэффициента поглощения в классе слоисто-однородных сред. В рамках борновского приближения реализован алгоритм численного решения обратной задачи рассеяния, позволяющий найти эти функции и установить их функциональную зависимость. Исследовано решение обобщенного дифференциального уравнения с неизвестным коэффициентом, зависящим от решения. Доказана единственность решения задачи Коши в специальном классе функций. Полученный результат использован при решении обратной задачи рассеяния в слоистой среде с поглощением. Поставлена обратная задача магнитотеллурического зондирования системы неоднородных слоев в проводящем полупространстве. Доказана теорема единственности ее решения. Для эволюционного уравнения изучена обратная задача о нахождении неизвестной правой части. Дополнительная информация представляет собой интеграл Римана-Стильтьеса. Показано, что решение обратной задачи представимо сходящимся рядом Неймана. Установлен конструктивный алгоритм для поиска решения обратной задачи. Предложен алгоритм оценки ядра размытия для изображений с равномерным линейным размытием. Алгоритм использует метод выделения хребтовых структур и анализ гистограмм распределения направлений. Полученные точности оценки направления размытия и степени размытия позволяют использовать данный метод для решения практических задач.
3 1 января 2018 г.-31 декабря 2018 г. Исследование обратных задач математической физики и разработка численных методов их решения
Результаты этапа: Исследованы обратные коэффициентные задачи и задачи определения источника для гиперболических уравнений. Доказаны теоремы единственности их решения. Разработаны и программно реализованы численные методы решения обратных задач. Доказана теорема единственности решения обратной задачи электромагнитного зондирования трехмерной неоднородности с произвольным распределением электропроводности. Исследованы обратные задачи рассеяния в слоистых акустических и упругих средах. Построены алгоритмы решения обратных задач, основанные на преобразовании Радона. Проведено исследование линейной обратной задачи для дифференциального уравнения в банаховом пространстве в предположении о суперустойчивости эволюционной полугруппы. Исследованы обратные задачи для математических моделей динамики сорбции и популяционной динамики. Разработаны и программно реализованы численные методы их решения. Разработаны методы оценки качества стереоскопических изображений, основанные на использовании аппарата сверточных нейронных сетей и на особенностях бинокулярного зрения.
4 1 января 2019 г.-31 декабря 2019 г. Исследование обратных задач математической физики и разработка численных методов их решения
Результаты этапа: Для квазилинейных уравнений с данными на характеристиках поставлены и изучены обратные задачи, состоящие в определении неизвестных функций, входящих в уравнения, по дополнительной информации о решении задач с данными на характеристиках. Доказаны теоремы существования решения этих обратных задач. Изучена трёхмерная задача электромагнитного зондирования неоднородной проводящей зоны, расположенной в слоистой среде, доказана теорема единственности решения обратной задачи. Исследована обратная задача рассеяния в однородной нестационарной среде для системы уравнений акустики. Установлен класс граничных источников, для которых задача определения плотности имеет единственное решение. Разработан и реализован итерационный метод решения задачи, основанный на интегро-функциональных уравнениях Вольтерра первого и третьего рода. Исследована обратная задача восстановления правой части в абстрактном дифференциальном уравнении произвольного порядка, установлен критерий единственности ее решения. Разработан и программно реализован итерационный метод решения обратной задачи рассеяния в нестационарной среде. Предложен и программно реализован численный метод решения обратной задачи для уравнения Лапласа в области с неизвестной внутренней границей.
5 1 января 2020 г.-31 декабря 2020 г. Исследование обратных задач математической физики и разработка численных методов их решения
Результаты этапа:

Прикрепленные к НИР результаты

Для прикрепления результата сначала выберете тип результата (статьи, книги, ...). После чего введите несколько символов в поле поиска прикрепляемого результата, затем выберете один из предложенных и нажмите кнопку "Добавить".