ИСТИНА |
Войти в систему Регистрация |
|
ИСТИНА ИНХС РАН |
||
Разделение и трансмутация - это подход, направленный на разделение отработавшего ядерного топлива на его компоненты с последующей трансмутацией актинидов (An) в менее опасные радионуклиды. Но из-за их высокой способности отравлять нейтронами, лантаноиды (Ln) должны быть отделены перед трансмутацией An, т.к. они препятствуют этому процессу. Из-за сходных физических и химических свойств разделение An и Ln является наиболее сложным из известных гидрометаллургических задач разделения. Жидкостно–жидкостная экстракция является основным методом, применяемым для разделения f-элементов из ядерных отходов. Ключевым компонентом для осуществления этого процесса является органический лиганд. В ходе настоящего проекта планируется осуществить молекулярный дизайн и разработать эффективные подходы к синтезу широкого круга макроциклических соединений фенантролинового ряда. В планах провести широкий скрининг экстракционных свойств получаемых гетероциклических лигандов, а также подробное изучена их координационной химии по отношению к f-элементам. Отдельного внимания заслуживает получение и исследование люминесцентных свойств комплексных соединений на основе редкоземельных элементов. Реализация данного проекта несет в себе как фундаментальную, так и практическую ценность.
Among the alternative methods of generating electric energy, nuclear power occupies a special position. In addition to the fact that nuclear power is characterized by low emissions of carbon dioxide into the environment, it is also important that nuclear power provides electricity generation regardless of the time of day, season, or geographical location. The main and specific disadvantage is the formation of spent nuclear fuel (SNF) and high-level waste (VAO) generated during its processing. It is this reason that stops the sustainable development of nuclear energy. Separation and transmutation (P&T) is an approach aimed at separating spent nuclear fuel into its components, followed by the transmutation of actinides (An) into less hazardous radionuclides. However, due to their high ability to poison with neutrons, lanthanides (Ln) must be separated before An transmutation, because they interfere with this process. Also, a solution to this problem would provide a source for a number of rare metals of technological interest. Due to the similar physical and chemical properties, the separation of An and Ln is the most complex of the known hydrometallurgical separation problems.Liquid-liquid extraction is the main method used to separate f-elements from nuclear waste. The key component for this process is the organic ligand. Currently, developments in the field of molecular design and optimization of extraction of various classes of extractants (organophosphorus ligands, diamides, and N-heterocycles) are actively carried out in Russia and abroad, with an emphasis on the separation of actinides and lanthanides. At the same time, even minor modifications of the ligand structure, its coordination contour, or the solvent can have a significant impact on the process and efficiency of extraction (and separation) of metal ions. Ligands with oxygen and nitrogen donor atoms combine the advantages of all the above-mentioned classes of ligands. The oxygen atoms of the amides provide an overall affinity for An and Ln, which allows for high D values. The nitrogen atoms of the heterocycles form stronger complexes with An, providing selectivity. Derivatives of 1,10-phenanthroline and, in particular, diamides of 1,10-phenanthroline-2,9-dicarboxylic acid, are promising substances that meet all the above requirements. However, it should also be noted that the structural analogues of compounds of this class have been studied only in fragments. In the course of this project, molecular design will be implemented and effective approaches to the synthesis of a wide range of macrocyclic compounds of the phenanthroline series will be developed, while commercially available starting reagents, in particular 2,9-dimethyl-1,10-phenanthroline, will be used for the synthesis of key synthetic blocks. The structures and properties of all the obtained compounds will be studied in detail using the entire set of physicochemical methods (multicore NMR, high-resolution mass spectrometry, IR and UV spectroscopy, X-ray diffraction). Further, a wide screening of the extraction properties of the obtained heterocyclic ligands will be carried out, as well as their coordination chemistry with respect to f-elements will be studied in detail. Special attention should be paid to obtaining and studying the luminescent properties of complex compounds based on rare earth elements. Thus, the implementation of this project carries both fundamental and practical value.
Ожидаемые результаты: 1. Будет разработана альтернатива ПУРЕКС-процессу – несодержащие фосфора экстракционные системы, позволяющие эффективно выделять актиниды (U, Np, Pu, Am, Cm) из растворов ОЯТ, с возможностью дальнейшего взаимного разделения актинидов между собой без использования окислительно-восстановительных процессов. Таким образом, станет возможным возврат всех делящихся материалов в ядерно-топливный цикл с минимальным количеством вторичных радиоактивных отходов. 2. Результатом выполнения проекта станет разработка научной концепции выделения америция из высокоактивных отходов (ВАО) с применением макроциклических соединений. Химическое сходство с кюрием и лантаноидами делает получение индивидуального америция крайне сложным. Однако с экономической и экологической точки зрения выделение и дальнейшая трансмутация америция до более короткоживущих радионуклидов является ключевой задачей, без решения которой невозможен переход к замкнутому ядерному топливному циклу. 3. Будут найдены эффективные синтетические подходы к широкому кругу новых макроциклических соединений. Поскольку для многих макроциклических производных известно применение в качестве фармакологических препаратов, совершенствование методологии синтеза макроциклических фенантролинов может дать новые инструменты для разработки лекарств и других практических применений.
В течение последних лет коллектив был вовлечен в проект госкомпании «Росатом» по разработке высокоселективных и эффективных экстрагентов для комплексной переработки РАО. Используя данные компьютерного моделирования экстракционных равновесий, был разработан дизайн и реализован синтез нового типа N-гетероциклических полидентатных лигандов на основе 4,7-дизамещенных 1,10-фенантролин-2,9-дикарбоновых кислот. При финансовой поддержке ГК Росатом были наработаны опытные партии препаратов и проведены их экстракционные испытания на ПО «Маяк», которые продемонстрировали значения факторoв селективности при разделении стандартной пары америций/европий SFAm/Eu 40-50 и при разделении пары америций/кюрий SFAm/Сm ≥7, что близко к рекордным значениям, достигнутым на сегодняшний день в мире для таких систем. В настоящее время успешно завершены динамические эксперименты экстрагента для разделения америция и кюрия в технологических условиях на ПО «Маяк» и заканчивается подготовка патентной заявки на него. Несмотря на достигнутые успехи, разработанный нами лиганд приходится синтезировать в большое число стадий (более 10), что влияет на его себестоимость. Однако, реальные результаты, полученные нами, показывают, что фенантролиновые лиганды целесообразно использовать в решении нескольких других актуальных задач в технологиях замкнутого ядерного цикла, а также проблем ядерной медицины, которые и сформулированы в рамках данного проекта РНФ. Это серьезная проблема, для решения которой необходимо компьютерное моделирование, фундаментальные исследования в области органической химии, химии координационных соединений и радиохимии. Мы рассчитываем, что осуществление данного междисциплинарного проекта позволит выявить связь структуры лигандов с их экстракционными свойствами и разработать несколько экстракционных систем, которые ориентированы на решение главных задач проекта.
1) Реализованы многостадийные синтезы ключевых строительных блоков для конструирования линейных и макроциклических фенантролиндиамидов, исходные соединения получены в мультиграммовых количествах. 2) Синтезирована библиотека 1,10-фенантролин-2,9-дикарбоксамидов, исследованы особенности их строения, детально изучена их координационная химия по отношению к f-элементам и проведены экстракционные тесты, направленные на выявление эффективности таких лигандов в процессах экстракционного извлечения и разделения лантаноидов и актиноидов из азотнокислых сред. С высокими выходами синтезированы модельные лиганды, тетраалкилзамещенные фенантролиндиамиды L1 и L2. Структура модельных лигандов подтверждена данными HRMS, ИК-, ЯМР-спектроскопии и методом РСА. Модельные экстракционные тесты данных лигандов показали, что для пары Am(III)/Eu(III) они имеют коэффициенты распределения D(Am) < 1 и D(Eu) < 1, при этом SFAm/Eu составляет около 9 для обоих лигандов. На примере модельных диамидов L1 и L2 детально исследована координационная химия по отношению к нитратам всех РЗЭ, включая иттрий. Структура всех полученных комплексов исследована как в твёрдом виде, так и в растворе. Обнаружено существенное влияние атомного радиуса РЗЭ на строение комплексных соединений в твёрдом виде. Выявленная структурная особенность может существенным образом сказываться на свойствах образующихся комплексов фенантролиндиамидов с нитратами РЗЭ, что, в свою очередь, может влиять и на экстракционные свойства исследуемых фенантролиндиамидов. На примере модельных фенантролиндиамидов получены комплексные соединения со всем рядом РЗЭ, включая иттрий, структура всех полученных комплексов охарактеризована методом рентгеноструктурного анализа. Выяснено, что в зависимости от наличия либо отсутствия заместителей в 4 и 7 положениях 1,10-фенантролин-2,9-диамида лантаноидное сжатие сказывается по-разному, при этом установлены конкретные точки в ряду лантаноидов, где происходит смена координационного числа. Результаты этой работы опубликованы в журнале Mendeleev Communications и в журнале Polyhedron. 3) На основе хлорангидридов фенантролиндикарбоновых кислот и N-алкиланилинов осуществлён дизайн и синтез широкого круга N,N’-диалкил-N,N’-диарилдиамидов 1,10-фенантролин-2,9-дикарбоновой кислоты, которые отличаются строением заместителей в амидной функции, а также наличием либо отсутствием атомов хлора в положениях 4 и 7 фенантролинового ядра. Всего получено 20 лигандов этого типа. Проведены сравнительные экстракционные испытания всей линейки указанных выше фенантролиндиамидов, при этом обнаружено, что длина алифатического заместителя в пара-положении арильной группы сказывается в первую очередь на растворимости полученных лигандов и в меньшей степени влияет на селективность разделения f-элементов. К исключениям стоит отнести лиганды, содержащие трифторметильные группы в своём строении, а также лиганды, имеющие в своём строении орто-алкилированные арильные заместители. Так, в случае лигандов с трифторметильными заместителями коэффициенты извлечения для всех исследованных f-элементов заметно снижены по сравнению с остальными лигандами приведённого ряда. В свою очередь, лиганды, имеющие в своём строении орто-алкилированные арильные заместители, проявили необычные экстракционные свойства, показав высокие факторы разделения Am(III)/РЗЭ(III) в том числе «ранних» лантаноидов. 4) Проведены исследования свойств N,N’-диалкил-N,N’-диарилфенантролиндиамидов в качестве экстрагентов для извлечения уранилнитрата из азотнокислых сред. В комплексах с нитратом уранила одна из нитрато-групп находится во внешней координационной сфере, и внутренний положительный заряд комплекса уравновешивается зарядом внешнесферного нитрат-аниона. Строение комплексов подтверждено в том числе с применением таких современных методов, как EXAFS. Результаты данной работы опубликованы в журнале Inorganic Chemistry (Q1). Проведены эксперименты по жидкость-жидкостной экстракции уранилнитрата из азотнокислых сред 1,10-фенантролин-2,9-дикарбоксамидами. Показано, что лиганды этого типа демонстрируют уникальную способность извлекать уран из растворов азотной кислоты в полярный органический растворитель, образуя комплексы стехиометрии 1:2 в виде плотных ионных пар {[UO2LNO3]+[UO2(NO3)3]−} с помощью нового механизма экстракции, который представляет собой комбинацию двух хорошо известных механизмов сольватации и ионно-парного анионного обмена. Существование таких комплексных соединений подтверждено как в твердом виде методом РСА, так и в растворе методом UV−vis спектрофотометрии. Осуществлены квантово-химические расчёты, результаты которых находятся в хорошем соответствии с полученными экспериментальными данными. Результаты этой работы опубликованы в журнале Inorganic Chemistry (Q1). 5) Путём взаимодействия хлорангидрида 8 с циклическими вторичными аминами синтезированы лиганды L23-L30 с выходами до 90%. Структура лигандов подтверждена данными HRMS, ИК- , ЯМР-спектроскопии и методом РСА. Наилучшие экстракционные свойства в данном ряду лигандов показал диамид на основе пирролидина (SFAm/Eu ~ 12), причём для данного лиганда как экстракционная способность, так и фактор селективности SFAm/Eu оказываются более высокими по сравнению с лигандами L24 и L25, более растворимыми в мета-нитробензотрифториде (Ф-3), который использовался для проведения модельных экспериментов по жидкость-жидкостной экстракции. Наблюдаемые закономерности связаны с уменьшением так называемой энергии предорганизации, то есть той энергии, которую лиганд должен затратить для перехода в конформацию, наиболее подходящую для образования комплексных соединений с f-элементами. Результаты подтверждены данными квантово-химических расчётов. Синтезирован ряд пирролидинпроизводных фенантролиндиамидов, которые отличались строением заместителя в α-положении, а именно метильной, фенильной и трифторметильной группами. Выяснено, что введение метильных групп позволяет существенно улучшить экстракционные свойства тестируемых лигандов по сравнению с незамещёнными пирролидиндиамидами и лигандами с CF3-группами. Эти результаты опубликованы в журнале Inorganic Chemistry Frontiers (Q1). В тестируемом ряду наилучшими экстракционными свойствами обладает лиганд L35 c фенилпирролидиновыми амидными заместителями. Это позволяет предположить, что арильные заместители в амидной функции положительно влияют на экстракционную способность таких диамидов. С помощью препаративной хроматографии получены индивидуальные диастереомеры этих лигандов и проведено углублённое изучение особенностей их строения, координационной химии и экстракционных свойств. Строение каждой из диастереомерных форм лигандов L32 и L35 было однозначно подтверждено комбинацией спектральных методов и рентгеноструктурного анализа. Проведены экстракционные тесты, показавшие очень высокую эффективность лигандов в разделении Am(III) и лантаноидов от La до Er. Для поздних лантаноидов наблюдается сильный рост экстракционной эффективности. Детально изучена координационная химия различных диастереомерных форм лигандов L32 и L35, в частности, проведено УФ-вид спектрофотометрическое титрование лигандов нитратами лантаноидов. Количественно определены константны устойчивости комплексов различной стехиометрии лиганд:металл Получилены кристаллы комплексов различных диастереомерных форм лигандов L32 и L35 с нитратами некоторых лантаноидов, их структура исследована методом рентгеноструктурного анализа. Обнаружено, что комплексы L32 и L35 с лантаноидами от лантана до диспрозия имеют типичное строение, в то время как комплексы с поздними лантаноидами, в частности, с иттербием и лютецием, в кристалле обнаруживают стехиометрию состава L2M2, при этом в отличие от нейтральных комплексов с ранними лантаноидами они представляют собой ионные пары, в которых комплексный катион [L2M]3+ уравновешен металлсодержащим анионом, например, пентанитратом иттербия [Yb(NO3)5]2- и ещё одним нитрат-анионом. Экспериментальные данные подтверждены квантово-химическими расчётами. Таким образом, высокая эффективность L32 и L35 в отношении извлечения поздних лантаноидов при проведении жидкость-жидкостной экстракции объясняется образованием комплексных катионов [L2M]3+, уравновешенных металлсодержащими анионами. Выяснено, что диастереомерия оказывает существенное влияние на экстракционные показатели, при этом мезо-форма в целом оказывается более эффективной по сравнению с рацемической. Результаты этой работы представлены в виде устного доклада на Всероссийской научной школе-конференции «Марковниковские Чтения» (2024 год, Красновидово). Библиотека 1,10-фенантролиндиамидов, содержащих асимметрические центры в амидных заместителях, была значительно расширена, получены новые примеры лигандов с циклическими амидными фрагментами, содержащими арильные заместители в альфа-положении цикла пирролидина либо пиперидина. Арильные заместители отличаются количеством и разветвленностью алкильных групп, связанных с бензольным кольцом, либо могут содержать атом фтора. Некоторые из полученных лигандов разделены на диастереомерные формы. 6) На основе взаимодействия дихлорангидридов 8 либо 12 с вторичными циклическими диаминами, такими как пиперазин либо N,N’-диметилэтилендиамин, с выходами до 48% получены первые макроциклические фенантролиндиамиды L36-L39, содержащие два фенантролиновых гетероциклических остова. Структура макроциклов L36-L39 подтверждена совокупностью спектральных методов анализа и данными рентгеноструктурного анализа. Найдены условия селективного разделения пары Am(III)/Eu(III) макроциклом L37 в щелочных средах, достигая коэффициента селективности равного 40. Эффективность и селективность L37 в отношении разделения Am(III)/Eu(III) значительно превышают эффективность и селективность других известных макроциклов – каликсаренов. Проведено углублённое изучение структуры и свойств макроциклов L36 и L37. Анализ кристаллической упаковки в кристаллах таких макроциклов выявил наличие пустот, которые могут быть заняты как молекулами растворителей, так и более объемными наполнителями, например, нитратами f-элементов. Методом динамического светорассеяния исследована самоагрегации макроцикла L37 в среде различных растворителей и показано, что в зависимости от природы растворителя могут образовываться молекулярные ассоциаты с различным молекулярно-массовым распределением. Проведенные исследования обладают высокой фундаментальной ценностью, поскольку полученные результаты позволили достичь более глубокого понимания влияния различных факторов, влияющих на эффективность извлечения и селективного разделения f-элементов методом жидкостной экстракции, в том числе и для более хорошо изученных линейных 1,10-фенантролин-2,9-дикарбоксамидов. Результаты работы опубликованы в International Journal of Molecular Sciences (Q1). Проведены квантово-химические расчёты, которые показали, что по сравнению с макроциклами L36 и L37, для макроциклов L38 и L39 существует большее количество конформеров, энергии которых отличаются на величину около 1 ккал/моль. Таким образом, исследование стереодинамического поведения макроциклов L38 и L39 показало их бóльшую конформационную лабильность по сравнению с макроциклами L36 и L37. Результаты этого исследования опубликованы в Журнале Органической Химии. 7) Синтезирована библиотека макроциклических фенантролиндиамидов с размерами циклов от 13 до 16. Строение всех полученных макроциклов надежно подтверждено совокупностью спектральных методов анализа, включая методы двумерной спектроскопии ЯМР, а также в ряде случаев рентгеноструктурным анализом. Проведены экстракционные тесты, которые показали, что с расширением размера макроцикла экстракционная способность увеличивается, достигая наивысших значений для макроцикла L47, превосходя по фактору селективности в паре Am(III)/Eu(III) известные на сегодняшний день открытоцепные фенантролиндиамиды. С привлечением квантово-химических расчётов проведено моделирование структур таких макроциклов методом функционала плотности в приближении газовой фазы. Результаты теоретического моделирования подтверждают, что эффективность связывания таких лигандов с РЗЭ увеличивается с расширением цикла макромолекулы, и циклы меньшего размера малоэффективны для связывания катионов лантаноидов. Тем не менее, было показано, что такие лиганды могут более прочно связывать катионы переходных металлов с меньшими ионными радиусами. Результаты этой работы представлены в виде устного доклада на Всероссийской научной конференции «Марковниковские чтения: органическая химия от Марковникова до наших дней» (WSOC-2022, 16-21 сентября 2022, Россия, Сочи) и стендового доклада на Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2023» (10-21 апреля, 2023, Россия, Москва). Стендовый доклад был отмечен как лучший в своей сессии. Расширена библиотека макроциклических фенантролиндиамидов, содержащих в своём строении одно гетероциклическое ядро. Одной из сложностей получения таких объектов является синтез исходных диаминов с различной длиной углеводородного линкера между атомами азота. Опробованы три ключевых подхода к синтезу таких диаминов. Подход, заключающийся в конденсации диаминоалкана и йодбензола в присутствии каталитических количеств CuI и пролина, оказался наиболее удобным и эффективным. В данном случае выход целевых диаминов достигает 80%. Диамины введены в реакцию с ацилдихлоридами 1,10-фенантролин-2,9-дикарбоновой кислоты и 4,7-дихлор-1,10-фенантролиндикарбоновой кислоты, в результате чего получены новые макроциклические фенантролиндиамиды, содержащие в своём строении один гетероароматический фрагмент, в том числе примеры новых макроциклических фенантролиндиамидов с размерами цикла от 15 до 18, а также макроцикл, содержащий гетероатом в строении линкера между амидными атомами азота. На примере 4,7-дихлорзамещённых макроциклических фенантролиндиамидов показана возможность дальнейшей функционализации таких соединений в положения 4 и 7 гетероциклического остова. Хлорсодержащие 16-тичленные макроциклы введены в реакцию с пирролидином, что позволило с выходами более 80% получить первые 4,7-бис-пирролидинзамещённые макроциклические 1,10-фенантролин-2,9-дикарбоксамиды. Такие соединения могут оказаться перспективными объектами для создания люминесцентных материалов. Проведены квантово-химические расчёты, нацеленные на выявление возможности использования макроциклических 1,10-фенантролин-2,9-дикарбоксамидов для связывания d-элементов. Оптимизированы структуры комплексов макроциклов L49-L51 с хлоридами магния, кальция, никеля, цинка и палладия. Результаты проведённых расчётов показали, что 18-тичленный макроцикл L51 с наибольшей длиной углеводородного линкера показывает наилучшие значения в энергии связывания со всем рядом исследованных хлоридов металлов. Наибольший выигрыш энергии достигается при образовании комплекса макроцикла L51 с хлоридом палладия. Исследована возможность использования макроциклических фенантролиндиамидов в качестве хемоселективных рецепторов для различных анионов. В данном случае наибольший интерес представляли макроциклы без фенильных заместителей при амидных атомах азота. Оптимизированы структуры комплексов с анионами ClO4-, CN-, Cl- и F-. Показано, что наибольший выигрыш энергии достигается при связывании макроциклов L52-L54 с фторид-анионом, при этом наилучшие значения наблюдаются для 18-тичленного макроцикла L54 с наибольшей длиной углеводородного линкера. Таким образом, макроциклические фенантролиндиамиды являются перспективными хемосенсорами для связывания фторид-аниона. Результаты этой работы представлены в виде устного доклада на Международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов-2024". 8) Изучены синтетические подходы к несимметричным лигандам на основе 1,10-фенантролина, содержащим в 4 и 7 положениях две различные группы в одной молекуле. С этой целью синтезирован ряд 4,7-дихлор-1,10-фенантролиндиамидов и осуществлено нуклеофильное замещение атомов хлора на фтор. Выяснено, что присутствие влаги приводит к образованию несимметричных 4-оксо-7-фтор-1,10-фенантролин-2,9-дикарбоксамидов в качестве побочных продуктов. При строгом дозировании количества воды такие несимметричные диамиды являются мажорными продуктами, и их выход в ряде случае достигает 80%. Исследована координационная химия таких соединений в реакциях комплексообразования с нитратами РЗЭ, а также проведены сравнительные экстракционные тесты по разделению лантаноидов и америция. В случае 4,7-дифторзамещённого лиганда ранние лантаноиды (например, La и Ce) экстрагируются лучше, значение D(La) составляет более 1000, далее экстракционная способность снижается во всём ряду РЗЭ. В случае 4-оксо-7-фтор-змещённого лиганда на графике присутствует излом для Gd-Tb. Вместе с этим, экстракционная способность фтор-оксо лиганда снижена на несколько порядков по сравнению дифторсодержащим лигандом. Таким образом, замещение как минимум одного из атомов галогена на гидроксильную группу приводит к существенному подавлению экстракционных свойств. Объяснение этому факту найдено с привлечением инструментов квантово-химического моделирования в совокупности с анализом данных РСА для лигандов и их комплексных соединений с нитратами РЗЭ. Выяснено, что 4-оксо-7-фторсодержащему лиганду для образования комплекса требуется не только преодолеть энергию предорганизации амидных заместителей для принятия нужной конформации в комплексе, но также преодолеть энергию таутомерного перехода из оксо-таутомерной формы в менее выгодную гидрокси-форму. Энергия такого перехода по данным проведённых расчётов может достигать 6 ккал/моль. Результаты этой работы опубликованы в журнале Inorganic Chemistry (Q1), а также представлены в виде устного доклада на Всероссийской научной конференции "Марковниковские чтения: Органическая химия от Марковникова до наших дней", (WSOC 2023, Домбай, Россия, 1-5 июня 2023). Раскрыт синтетический потенциал нуклеофильного замещения атомов фтора, связанных с фенантролиновым остовом. На примере модельного 4,7-дифторзамещённого лиганда был исследован кислотный гидролиз по связям C-F. С привлечением ЯМР-мониторинга реакционной смеси на ядрах 1H и 19F было выяснено, что оба атома фтора замещаются на гидроксильные группы за 20 часов при температуре 30С, давая в результате соответствующий 4,7-диоксилиганд, структура которого однозначно подтверждена данными РСА. 4,7-дифтор-1,10-фенантролин-2,9-диамиды вовлечены в реакцию и с другими нуклеофилами, в том числе с азидо-группой, что позволило получить серию новых 4,7-функционализированных 1,10-фенантролин-2,9-диамидов. На основе 4-оксо-7-фторзамещённых фенантролиндиамидов осуществлен синтез широкого ряда 4,7-дифункциональных производных 1,10-фенантролин-2,9-диамидов. Так, атом фтора может быть не только подвергнут кислотному гидролизу, но также в мягких условиях может быть замещен на нитрильную группу, N-пирролидинил либо на азидную группу, давая соответствующие несимметрично-замещённые 1,10-фенантролин-2,9-диамиды с выходами до 94%. В свою очередь, для азидозамещённых производных проведены серии химических превращений, характерных для азидогруппы, в частности, азид-алкиновое [3+2]-циклоприсоединение и реакция Штаудингера. Таким образом, показано, что в реакцию нуклеофильного замещения галогенов в диамидах 4-оксо-7-фтор- и 4,7-дифтор-1,10-фенантролин-2,9-дикарбоновой кислоты может быть вовлечен широкий круг нуклеофилов, причем данное превращение протекает эффективно и в мягких условиях. На основе этой реакции разработан общий подход и реализован синтез серии 4,7-функционализированных фенантролиндикарбоксамидов как симметричного, так и несимметричного строения. По результатам данной части исследования защищена диссертация на соискание учёной степени кандидата химических наук по специальности 1.4.3 Органическая химия. 9) На примере модельных фенатролиндиамидов с компактными пирролидиновыми заместителями получены и полностью охарактеризованы комплексные соединения с нитратом лютеция. В результате обнаружены существенные отличия в их строении в зависимости от природы заместителей в 4 и 7 положениях гетероциклического ядра, а именно атомов водорода, хлора и фтора. Результаты этой работы опубликованы в International Journal of Molecular Science (Q1), а также представлены в виде стендового доклада на конференции «Ломоносов-2023». Доклад отмечен грамотой как лучший в своей секции. 10) На основе 2,9-дихлор-1,10-фенантролина, полученного в количестве более 25 граммов в соответствии со схемой 3, реакцией Pd-катализируемого кросс-сочетания с лактамами и анилидами синтезированы в необходимых количествах 9 лигандов нового типа, в которых координационные центры инвертированы по сравнению с «классическими» фенантролиндиамидами. Строение всех полученных лигандов подтверждено совокупностью спектральных методов и данными РСА. Получены комплексные соединения с нитратами некоторых лантаноидов, в ряде случаев их строение удалось однозначно подтвердить методом рентгеноструктурного анализа. Проведены квантово-химические расчёты и оптимизированы структуры комплексных катионов лигандов нового типа с некоторыми d-элементами, в частности, с никелем, цинком и палладием. Выяснено, что геометрия лигандов нового типа является более подходящей для связывания d-элементов. 11) Получена линейка 2,9-бис-аминопроизводных 1,10-фенантролина, которые могут выступать в качестве объектов сравнения с 1,10-фенантролин-2,9-дикарбоксамидами и лигандами нового типа, в которых координационные центры инвертированы по сравнению с «классическими» фенантролиндиамидами. 12) Проведено исследование N-гетероциклических производных для связывания перренат-аниона, который является наиболее близкой моделью пертехнетат-аниона. Так, в результате реакции коммерчески доступного цианурхлорида с пиридином образуется соответствующее ионное соединение, которое может быть использовано для эффективного осаждения перренат-аниона. Структуры хлоридных, нитратных и перренатных солей были установлены с помощью рентгеноструктурного анализа. Результаты этой работы опубликованы в журнале Molecules (Q1) и могут быть в дальнейшем использованы в качестве основы для разработки эффективных лигандов на основе N-гетероциклических соединений, в том числе фенантролинового ряда.
грант РНФ |
# | Сроки | Название |
1 | 19 июля 2021 г.-30 июня 2022 г. | Макроциклические фенантролиновые лиганды для разделения f-элементов в атомной энергетике |
Результаты этапа: В соответствии с планом работ в ходе выполнения первого этапа нами реализованы многостадийные синтезы дихлорангидридов 8 (схема 1) и 12 (схема 2), которые выступают в качестве ключевых строительных блоков для конструирования линейных и макроциклических фенантролиндиамидов. Схема 1. Синтез дихлорангидрида 4,7-дихлор-1,10-фенантролин-2,9-дикарбоновой кислоты. Схема 2. Синтез дихлорангидрида 1,10-фенантролин-2,9-дикарбоновой кислоты. В соответствии с приведёнными выше схемами дихлорангидриды 8 и 12 получены нами в мультиграммовых количествах и использованы далее для синтеза на их основе широкого круга фенантролиндиамидов различного строения. 2) В качестве модельных лигандов нами были выбраны и синтезированы тетраалкилзамещенные фенантролиндиамиды 13 и 14 (Схема 3). Схема 3. Синтез модельных лигандов 13 и 14. Ввиду простоты заместителей при амидных атомах азота такие лиганды имеют довольно простые и предсказуемые спектры ЯМР. Выбранная длина алкильных заместителей обусловлена липофильностью образующихся лигандов – при использовании диэтил- или дипропиламина растворимость лигандов оказывается недостаточной для проведения полноценных экстракционных тестов. Таким образом, при взаимодействии соответствующих хлорангидридов с дибутиламином нами синтезированы модельные лиганды 13 и 14 с выходами 81% и 70% соответственно. Структура модельных лигандов подтверждена данными HRMS, ИК- и ЯМР-спектроскопии. Структуру модельного лиганда 14 нам удалось однозначно подтвердить методом РСА (Рис. 1). Рис. 1. Структура лиганда 14, подтвержденная методом РСА. Модельные экстракционные тесты данных лигандов показали, что для пары Am(III)/Eu(III) они имеют коэффициенты распределения D(Am) < 1 и D(Eu) < 1, при этом SFAm/Eu ~ 9 для обоих лигандов. 3) На примере диамида 13 мы показали комплексообразующие свойства лигандов этого класса, синтезировав комплексы с нитратами некоторых редкоземельных элементов, а именно с нитратом лантана, неодима, европия и лютеция. Структура всех полученных комплексов была исследована нами как в твёрдом виде, так и в растворе. При этом нам удалось обнаружить существенное влияние атомного радиуса РЗЭ на строение комплексных соединений в твёрдом виде. На рисунках 2 и 3 приведены структуры комплексов лиганда 13 с нитратами лантана и лютеция соответственно. Рис. 2. Структура комплекса лиганда 13 с нитратом лантана, подтвержденная методом РСА. Структура дана в двух проекциях Рис. 3. Структура комплекса лиганда 13 с нитратом лютеция, подтвержденная методом РСА. Структура дана в двух проекциях Так, в случае нитрата лютеция наблюдается изменение координационного числа лантаноида, которое в последнем случае равно 9. Это связано с тем, что одна из нитрато-групп становится монодентатнокоординированной. Эта выявленная структурная особенность может существенным образом сказываться на свойствах образующихся комплексов фенантролиндиамидов с нитратами РЗЭ, что, в свою очередь, может влиять и на экстракционные свойства исследуемых фенантролиндиамидов. Результаты этой работы опубликованы нами в журнале Mendeleev Communications. 4) Далее нами были получены комплексы некоторых фенантролиндиамидов с уранилнитратом и изучены структурные особенности образующихся соединений. Оказалось, что строение комплексов фенантролиндиамидов с нитратом уранила существенно отличается от комплексов фенантролиндиамидов с нитратами РЗЭ. В комплексах с нитратом уранила одна из нитрато-групп находится во внешней координационной сфере, и внутренний положительный заряд комплекса уравновешивается зарядом внешнесферного нитрат-аниона. Строение комплексов было подтверждено в том числе с применением таких современных методов, как EXAFS. Результаты этой работы опубликованы нами в журнале Inorganic Chemistry (Q1). 5) Ранее путём взаимодействия хлорангидрида 4,7-дихлор-1,10-фенантролин-2,9-дикарбоновой кислоты и циклических вторичных аминов нами были синтезированы лиганды 15-22 с выходами до 90% (схема 4). Структура лигандов подтверждена данными HRMS, ИК- и ЯМР-спектроскопии. Для некоторых соединений удалось вырастить монокристалл и подтвердить структуру методом РСА. Схема 4. Синтез циклоалкилзамещенных фенантролиндиамидов. Как видно из рисунка 4, наилучшие экстракционные свойства в данном ряду лигандов показал диамид 15 на основе пирролидина – SFAm/Eu ~ 12, причём для данного лиганда как экстракционная способность, так и фактор селективности SFAm/Eu оказываются более высокими по сравнению с лигандами 16 и 17, более растворимыми в мета-нитробензотрифториде (Ф-3), который использовался для проведения модельных экспериментов по жидкость-жидкостной экстракции. Рис. 4. Данные по экстракции Am(III)/Eu(III) лигандами 15-22. С применением квантово-химических расчётов, наблюдаемые результаты связаны нами с уменьшением так называемой энергии предорганизации, то есть той энергии, которую лиганд должен затратить для перехода в конформацию, наиболее подходящую для образовании комплексных соединений с f-элементами. Эти данные побудили нас продолжить поиск пирролидинзамещённых диамидов, сосредоточившись на получении производных, содержащих заместители в α-положении алифатических циклов. В соответствии с этим, нами был синтезирован ряд таких фенантролиндиамидов, которые отличались бы типом заместителя в α-положении, а именно метильной, фенильной и трифторметильной группами (Схема 5). Схема 5. Синтез α-пирролидинзамещённых лигандов. Поскольку для синтеза α-пирролидинзамещённых лигандов были использованы амины в виде смеси их изомеров, образующиеся лиганды также представляют собой смеси диастереомеров. Наличие в таких молекулах двух хиральных центров приводит к тому, что α-пирролидинзамещённые диамиды существуют в виде мезо-формы, RR- и SS- изомеров (Рис. 5). Рис. 5. Набор диастереомеров для α-пирролидинзамещённых лигандов В виду большого изомерного разнообразия, спектры полученных лигандов достаточно сложны, однако для диамидов 24 и 28 с метильными заместителями нам удалось вырастить монокристаллы и однозначно подтвердить их структуру при помощи рентгеноструктурного анализа (рис. 6). Рис 6. Структуры лигандов 15 (а) и 26 (b), установленные методом РСА. Также для метилпирролидиновых производных 15 и 26 мы получили серию комплексных соединений с нитратами РЗЭ и однозначно подтвердили структуру полученных комплексов в том числе с привлечением метода РСА (рис. 7). Рис 7. Структуры комплексов лигандов 15 и 26 с нитратом неодима. Далее мы провели квантово-химические расчёты и экстракционные тесты для полученных фенантролиндиамидов. Оказалось, что введение метильных либо фенильных групп позволяет существенно улучшить экстракционные свойства тестируемых лигандов. Эти результаты направлены нами в журнал Inorganic Chemistry Frontiers (Q1). Важно заметить, что в тестируемом ряду наилучшими экстракционными свойствами обладает лиганд 29 (рис. 8). Рис. 8. Данные по экстракции Am(III)/Eu(III) α-пирролидинозамещенными диамидами. Это позволяет предположить, что арильные заместители в амидной функции положительно влияют на экстракционную способность таких диамидов. Таким образом, из представленных данных становится очевидным, что именно наличие ароматических заместителей приводит к существенному улучшению экстракционных свойств синтезированных лигандов, что находится в соответствии с гипотезой так называемого «эффекта аномального арильного упрочнения». 6) Объединение в одной структуре выдающихся свойств, которые привносит фрагмент 1,10-фенантролина, с теми преимуществами, которые обеспечивают использование макроциклических соединений, позволяет рассчитывать на создание фенантролинсодержащих макроциклов с уникальными свойствами. В качестве ключевого структурного мотива было решено рассмотреть амиды 1,10-фенантролин-2,9-дикарбоновой кислоты, которые проявили выдающиеся свойства для разделения минорных актинидов в отработанном ядерном топливе. Мы предположили, что такой подход обеспечит значительный синергизм и позволит повысить селективность и эффективность таких экстрагентов. В ходе экспериментов нами показано, что в зависимости от структуры исходного диамина могут контролируемо получаться макроциклы состава «1:1» и «2:2», то есть соединения, которые построены из одного фрагмента фенантролина и диамина, а также макроциклы с большим размером цикла, в структуре которых присутствует два фенантролиновых фрагмента и два фрагмента диамина (схема 6). Схема 6. Синтез макроциклических диамидов на основе фенантролиндикарбоновой кислоты Для синтеза 16-членных макроциклических фенантролиндиаминов в качестве диамина мы использовали N,N’-дифенилгексаметилендиамин, для получения которого нами был применен двухстадийный синтез исходя из коммерчески доступного дибромгексана (Схема 7). Схема 7. Синтез N,N’-дифенилгексиламина. Далее на основе диамина 31 были синтезированы макроциклические фенантролиндиамиды 32 и 33 с выходами до 43% (Схема 8). Они охарактеризованы при помощи HRMS, ИК- и ЯМР-спектроскопии. Схема 8. Синтез 16-членны¬¬х мароциклических фенантролиндиамидов 32 и 33. Структуру макроцикла 33 нам удалось однозначно подтвердить методом РСА (Рис. 9). Рис. 9. Структура макроцикла 33, полученная методом РСА. Экстракционные тесты показали, что макроцикл 33 оказался самым эффективным экстрагентом из всех фенантролиндиамидов, превосходя по фактору селективности в паре Am(III)/Eu(III) известные на сегодняшний день открытоцепные фенантролиндиамиды (Таблица 1). Таблица 1. Экстракционные данные для макроцикла 33. D(Am) D(Eu) SFAm/Eu 14,24 0,17 84,40 7) В рамках выполнения 1-го этапа проекта мы показали принципиальную возможность получения 24-членных макроциклических фенантролиндиамидов состава «2:2», содержащих в себе два фенантролиновых ядра и два фрагмента диамина. Так, исходя из таких вторичных циклических диаминов как пиперазин и N,N’-диметилэтилендиамин нами с умеренными выходами (до 48%) была отработана методика синтеза макроциклов 34-37 (Рис. 10). Рис. 10. 24-членные макроциклические фенантролиндиамиды. Структура макроциклов 34-37 подтверждена совокупностью методов HRMS, ИК- и ЯМР-спектроскопии. Также методом РСА нами была однозначно подтверждена структура макроцикла 35 (Рис. 11). Рис. 11. Структура макроцикла 35 в двух проекциях. Данные объекты являются перспективными с точки зрения дальнейшего изучения их координационной химии, экстракционных и люминесцентных свойств. При этом предполагается, что за счет введения функциональных групп в положения 4,7- фенантролиновых ядер и варьирования длины углеводродного линкера между ними можно менять физические и химические свойства таких систем. Таким образом, в ходе выполнения работы по 1-му этапу проекта нами был синтезирован широкий ряд линейных и макроциклических фенантролиндиамидов для разделения f-элементов, получены комплексные соединения с нитратами РЗЭ и уранилнитратом, изучены структурные особенности таких соединений. Показано, что возможно настраивать их экстракционную способность, меняя заместители в амидной функции. Кроме того, впервые синтезированы и охарактеризованы 24-членные макроциклические фенантролиндиамиды – перспективные объекты для дальнейшего изучения. На рисунке 12 изображен гипотетический вектор развития направления фенантролиндиамидов. Рис. 12. Вектор развития фенантролиндиамидных экстрагентов. Результаты работы опубликованы в журнале Mendeleev Communications и в журнале Inorganic Chemistry (Q1). Одна статья направлена в редакцию журнала Inorganic Chemistry Frontiers (Q1). В рамках 1-го этапа проекта выполнен устный доклад по тематике проводимого исследования на Всероссийском конгрессе по химии гетероциклических соединений «КOST-2021» (Россия, г. Сочи, 12-16 октября 2021 года). Тема доклада: "Новые линейные и макроциклические диамиды 1,10-фенантролин-2,9-дикарбоновой кислоты: синтез, координационная химия и экстракционные свойства». Так образом, все задачи, предусмотренные планом 1-го года настоящего проекта, выполнены в полном объёме. | ||
2 | 1 июля 2022 г.-30 июня 2023 г. | Макроциклические фенантролиновые лиганды для разделения f-элементов в атомной энергетике |
Результаты этапа: 1) Нами осуществлён дизайн и синтез широкого круга N,N’-диалкил-N,N’-диарилдиамидов 1,10-фенантролин-2,9-дикарбоновой кислоты, которые отличаются строением заместителей в амидной функции, а также наличием либо отсутствием атомов хлора в положениях 4 и 7 фенантролинового ядра (Таблица 1). Таблица 1. Линейка фенантролиндиамидов 12 – 21. В соответствии с планами 2-го этапа работы нами проведены сравнительные экстракционные испытания всей линейки указанных выше фенантролиндиамидов, при этом обнаружено, что длина алифатического заместителя в пара-положении арильной группы сказывается в первую очередь на растворимости полученных лигандов и в меньшей степени влияет на селективность разделения f-элементов. К исключениям стоит отнести лиганды 21, содержащие трифторметильные группы в своём строении, а также лиганды 20, имеющие в своём строении орто-алкилированные арильные заместители. Так, в случае лигандов 21 коэффициенты извлечения для всех исследованных f-элементов снижаются по сравнению с лигандами 12-19, вероятно, ввиду наличия электронодефицитных трифторметильных групп. В свою очередь, лиганды 20 проявили необычные экстракционные свойства, показав высокие факторы разделения Am(III)/РЗЭ(III) в том числе «ранних» лантаноидов (рис.1). Рис. 1. Экстракционные тренды фенантролиндиамидов 12-21. Результаты данной работы готовятся для публикации в высокорейтинговом журнале. 2) В рамках второго этапа работы нами были продолжены исследования свойств N,N’-диалкил-N,N’-диарилфенантролиндиамидов в качестве экстрагентов для извлечения уранилнитрата из атноксилых сред. Эта задача представляется особенно важной ввиду того, что уран является основным компонентом в отработавшем ядерном топливе. Оказалось, что 1,10-фенантролин-2,9-диамиды, в частности, соединения 13b-17b (таблица 1) демонстрируют уникальную способность извлекать уран из растворов азотной кислоты в полярный органический растворитель, образуя комплексы стехиометрии 1:2 в виде плотных ионных пар {[UO2LNO3]+[UO2(NO3)3]−} с помощью нового механизма экстракции, который представляет собой комбинацию двух хорошо известных механизмов сольватации и ионно-парного анионного обмена. Существование таких комплексных соединений подтверждено как в твердом виде методом РСА (рис. 2), так и в растворе (UV−Vis спектрофотометрия). Рис. 2. Структура комплекса лиганда 15b с уранилнитратом. Также осуществлены квантово-химические расчёты, результаты которых находятся в хорошем соответствии с полученными экспериментальными данными. Результаты данной работы опубликованы в журнале Inorganic Chemistry (Q1). 3) Нами было продолжено изучение координационной химии 1,10-фенантролин-2,9-диамидов, поскольку строение комплексных соединений, образующихся в ходе экстракционного разделения f-элементов является ключом к пониманию физической химии происходящих процессов и позволяет осуществлять осмысленный дизайн эффективных гетероциклических экстрагентов. В свете сказанного выше, на примере двух модельных фенантролиндиамидов мы получили комплексные соединения со всем рядом РЗЭ, включая иттрий, и охарактеризовали структуру всех (!) полученных комплексов методом рентгеноструктурного анализа. Оказалось, что в зависимости от наличия либо отсутствия заместителей в 4 и 7 положениях 1,10-фенантролин-2,9-диамида лантаноидное сжатие сказывается по-разному, при этом мы установили конкретные точки в ряду лантаноидов, где происходит смена координационного числа (рис. 3). Рис. 3. Смена координационного числа лиганда в комплексах с нитратами РЗЭ. Таким образом, настройка экстракционных свойств возможна не только за счёт строения амидных заместителей, но также за счёт природы заместелей в гетероциклическом ядре. При этом электроноакцепторные группы, как правило снижают коэффициенты извлечения f-элементов, но позволяют в ряде случаев добиться лучшей селективности их разделения. Результаты этой работы направлены в журнал Polyhedron (POLYH-D-23-00373). 4) Поскольку наибольшие структурные изменения в строении комплексных соединений наблюдаются в конце ряда лантаноидов (сказывается лантаноидное сжатие), представляло отдельный интерес изучить координационную химию комплексных соединений фенантролиндиамидов с нитратом лютеция. Выбрав в качестве модельных лигандов фенатролиндиамиды с компактными пирролидиновыми заместителями, мы получили соответствующие комплексные соединения, обнаружив существенные отличия в их строении в зависимости от природы заместителей в 4 и 7 положениях гетероциклического ядра, а именно атомов водорода, атомов хлора и атомов фтора. Оказалось, что комплексы этих трёх модельных лигандов с нитратом лютеция устроены по-разному. В случае лиганда L3 одна из нитрато-групп покидает внутреннюю координационную сферу, замещаясь более компактной молекулой воды, в случае лиганда L4 две из трёх нитрато-групп оказываются во внешней сфере в виде анионов, замещаясь тремя молекулами воды, в то время как в случае лиганда L4 все три нитрато-группы остаются связанными с атомом лютеция бидентатно, реализуя координационное число равное 10, что является необычным фактом (рис. 4). Рис. 4. Комплексы пирролидинзамещённых фенантролиндиамидов с нитратом Lu. Попытка получить комплекс лиганда L5 стехиомерного состава “(L5)2Lu” неожиданно привела к уникальному многоядерному оксокомплексу, построенному из трёх молекул лиганда, связанных между собой за счёт связей Lu-O-Lu, при этом атомы лютеция имеют разное координационное число – 9 для внешних звеньев и 8 для центрального звена (рис. 5). Рис. 5. Структура многоядерного оксокомплекса лиганда L5 с нитратом Lu. Мы провели экстракционные испытания лиганда L5 для всего ряда лантаноидов в сравнении с америцием, и установили, что исследуемый лиганд чувствителен к концентрации азотной кислоты, из растворов которой проводится извлечение f-элементов (рис. 6). Рис. 6. Экстракционные испытания лиганда L5. Результаты этой работы опубликованы нами в International Journal of Molecular Science (Q1), а также представлены в виде стендового доклада на конференции «Ломоносов-2023». Доклад отмечен грамотой как лучший в своей секции. 5) В ходе выполнения данного проекта отдельное внимание было уделяется лигандам, содержащим пирролидиновые амидные функции с заместителями в α-положениях пирролидиновых циклов, в частности, метильные, фенильные либо CF3-группы. Для таких соединений возможна стереоизомерия (рис. 7), которая может оказывать существенное влияние на экстракционные свойства лигандов. Рис. 7. Диастереоизмеры α-пирролидинзамещённых фенантролиндиамидов. Ранее мы продемонстрировали эффект стереоизомерии на примере α-метилпирролидиновых производных и показали, что мезо-форма лиганда является более эффективной при экстракционном разделении f-элементов. Результаты этой работы опубликованы в журнале Inorganic Chemistry Frontiers (Q1). 6) Продолжено исследование структуры и экстракционных свойств новых макроциклических фенантролиндиамидов, содержащих в своём строении два фенантролиновых ядра. Структура этих соединений всесторонне подтверждена как спектральными методами исследования, так и рентгенострукурным анализом (рис. 8). Рис. 8. РСА макроциклов (a) L6 и (б) L7 Помимо этого, с применением метода динамического светорассеяния показано, что полученные макроциклы склонны с самоагрегации, на которую влияет как растворитель, так и ультразвуковое воздействие. Нами были найдены условия селективного разделения пары Am(III)/Eu(III) макроциклом L7 в щелочных средах, достигая коэффициента селективности равного 40. Эффективность и селективность L7 в отношении разделения Am(III)/Eu(III) значительно превышают эффективность и селективность других известных макроциклов – каликсаренов (рис. 9). Рис. 9. Эффективность извлечения Am(III) макроциклом L7 в сравнении с каликсаренами Результаты этой работы будут наапрвлены в течение мая в International Journal of Molecular Sciences (квартиль Q1). 7) Другим подходом к повышению растворимости фенантролиндиамидных макроциклов представлялось использование вторичных аминов с более длинными алифатическими линкерами, например, N,N’-дифенил-1,3-диаминопропана. Вопреки ожиданиям, вместо макроциклического фенантролиндиамида, содержащего 2 фенантролиновых ядра, замыкается цикл меньшего размера (схема 2). Схема 2. Синтез макроциклических фенантролиндиамидов с меньшим размером цикла С учётом этого результата нами была получена серия N,N’-диарилзамещенных α,ω-алкандиаминов и с выходами до 40% и выше синтезирована библиотека из 10 макроциклических фенантролиндиамидов с размерами циклов от 13 до 16 (рис. 10). Рис. 10. Библиотека фенантролиндиамидов L8 – L17 с размерами цикла от 13 до 16. Строение всех полученных макроциклов надежно подтверждено совокупностью спектральных методов анализа, включая методы двумерной спектроскопии ЯМР, а также в ряде случаев рентгеноструктурным анализом (рис. 11). Рис. 11. РСА макроциклов (a) L9 и (б) L15 Экстракционные тесты (таблица 2) показали, что с расширением размера макроцикла экстракционная способность увеличивается, достигая наивысших значений для макроцикла L15, превосходя по фактору селективности в паре Am(III)/Eu(III) известные на сегодняшний день открытоцепные фенантролиндиамиды. Таблица 2. Экстракционные тесты макроциклических фенантролиндиамидов L8–L15. Также был получен макроциклический фенантролиндиамид L18, содержащий метильные группы в строении арильных заместителей амидной функции. Строение этого соединения было однозначно подтверждено данными рентгеноструктурного анализа (рис. 12), планируется исследование экстракционных свойств этого лиганда. Рис. 12. Структура макроциклического 1,10-фенантролин-2,9-диамида L18 С привлечением квантово-химических расчётов нами было проведено моделирование структур таких макроциклов методом функционала плотности в приближении газовой фазы. Результаты теоретического моделирования подтверждают, что эффективность связывания таких лигандов с РЗЭ увеличивается с расширением цикла макромолекулы, и циклы меньшего размера малоэффективны для связывания катионов лантаноидов. Тем не менее, такие лиганды могут более прочно связывать катионы переходных металлов с меньшими ионными радиусами. В этом случае их можно будет использовать для отделения лантаноидов и актиноидов от переходных металлов, что является актуальной проблемой в технологиях переработки ОЯТ. С учётом этих данных нами осуществляются попытки получения макроциклических фенантролиндиамидов с размерами циклов 17 и более. Также полученные макроциклические лиганды планируется исследовать в качестве агентов связывания различных d-элементов, а также изучить их люминесцентые свойства. Результаты этой работы представлены в виде устного доклада на Всероссийской научной конференции «Марковниковские чтения: органическая химия от Марковникова до наших дней» (WSOC-2022, 16-21 сентября 2022, Россия, Сочи) и стендового доклада на Международной научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2023» (10-21 апреля, 2023, Россия, Москва). Стендовый доклад был отмечен как лучший в своей сессии. 8) В рамках выполнения 2-го этапа проекта нами проведены модельные эксперименты по синтезу макроциклических лигандов путем многокомпонентных реакций (Схема 3). Схема 3. Многокомпонентные реакции для синтеза макроциклических фенантролинов Изначально в качестве одного из компонентов была выбрана 4,7-дихлор-1,10-фенантролин-2,9-дикарбоновая кислота, однако её растворимость в наиболее распространенных растворителях для многокомпонентных реакций (метанол и трифторэтанол) оказалась недостаточной для протекания реакции. В дальнейших экспериментах была использована более растворимая 4,7-дибутокси-1,10-фенантролин-2,9-дикарбоновая кислота. После проведения реакции в трифторэтаноле в течение недели в реакционной смеси наблюдалось образование оснований Шиффа по реакции 1,6-гександиамина и соответствующих альдегидов. Мы попытались осуществить синтез более структурно простых открытоцепных лигандов, используя этот подход (Схема 4), однако и в этом случае реакция заканчивалась на стадии образования основания Шиффа. Схема 4. Синтезу открытоцепных лигандов с помощью многокомпонентных реакций. Проведенные эксперименты показывали, что 1,10-фенантролин-2,9-дикарбоновая кислота и ее 4,7-замещенные аналоги являются малоактивными в данных многокомпонентных реакциях, что дополнительно подтверждается литературными данными [A. Borja-Miranda et. al. J. Org. Chem., 2020, 86(1), 929-946. https://doi.org/10.1021/acs.joc.0c02441]. В ходе выполнения дальнейших экспериментов мы планируем реализовать данный подход к синтезу макроциклических фенантролинов, используя в качестве исходного реагента 2,9-бис(аминометил)-1,10-фенантролин. 9) Отдельного внимания заслуживает проведённое нами исследование N-гетероциклических производных для связывания перренат-аниона, который является наиболее близкой моделью пертехнетат-аниона, присутствие которого в отработавшем ядерном топливе и его последующее извлечение представляет собой отдельную сложную задачу. Так, в результате реакции коммерчески доступного цианурхлорида с пиридином образуется соответствующее ионное соединение, которое может быть использовано для эффективного осаждения перренат-аниона (схема 5). Схема 5. Синтез ионнообменного осадителя ReO4-аниона на основе цианурхлорида Структуры хлоридных, нитратных и перренатных солей были установлены с помощью рентгеноструктурного анализа. Результаты этой работы опубликованы в журнале Molecules (Q1) и могут быть в дальнейшем использованы в качестве основы для разработки эффективных лигандов на основе N-гетероциклических соединений, в том числе фенантролинового ряда. Заключение В ходе выполнения работы по 2-му этапу проекта осуществлён дизайн и синтез широкого круга N,N’-диалкил-N,N’-диарилдиамидов 1,10-фенантролин-2,9-дикарбоновой кислоты, которые отличаются строением заместителей в амидной функции, а также природой заместителей в положениях 4 и 7 фенантролинового ядра. Проведены экстракционные тесты полученных лигандов, которые выявили наиболее интересные представители полученных фенантролиндиамидов. Результаты планируются к публикации в высокорейтинговом журнале. Продолжена работа в области синтеза диастереомерных лигандов, показан яркий эффект стереоизомерии на экстракционные свойства по отношению к f-элементам. Результаты работы опубликованы в журнале Inorganic Chemistry Frontiers (Q1), а также готовится материал для ещё одной публикации в высокорейтинговом журнале. Детально изучена координационная химия фенантролиндиамидов по отношению к нитратам актиноидов и лантаноидов. Выявлен эффект «двойного» извлечения уранилнитрата фенантролиндиамидами из азотнокислых сред за счёт образования комплексных соединений стехиомерного состава лиганд:металл равного 1:2. Результат работы опубликован в журнале Inorganic Chemistry (Q1). С нитратами РЗЭ на примере модельных открытоцепных лигандов получены комплексные соединения со всем рядом РЗЭ и каждый из комплексов проанализирован методом рентгеноструктурного анализа. Результат этой работы направлен в виде научной статьи в журнал Polyhedron. Детально изучены особенности строения комплексных соединений некоторых фенантролиндиамидов с нитратом лютеция, в том числе на примере лигандов, содержащих в своём строении атомы фтора. Результат работы опубликован в журнале International Journal of Molecular Sciences (Q1), а также представлен в виде стендового доклада на Международной научной конференции «Ломоносов-2023». Делально изучено строение первых представителей макроциклических фенантролиндиамидов, содержащих в своём строении два фенантролиновых ядра. Показано, что такие соединения эффективно и селективно могут связывать америций в щелочных средах. Обнаружено, что в случае диаминов с более длинными линкерами замыкаются макроциклы с размерами циклов от 13 до 16, при этом экстракционная эффективность растёт с увеличением размера макроциклической полости. Все задачи, запланированные на 2-й год проекта, выполнены полностью. | ||
3 | 1 июля 2023 г.-30 июня 2024 г. | Макроциклические фенантролиновые лиганды для разделения f-элементов в атомной энергетике |
Результаты этапа: В ходе выполнения работ по 3-му этапу достигнуты следующие результаты: 1) получены новые макроциклические фенантролиндиамиды, содержащие в своём строении два 1,10-фенантролиновых ядра. В этих соединениях фенантролиновые фрагменты связаны подвижными линкерами N,N'-диметилэтилендиамина. Исследование стереодинамического поведения новых макроциклов показало, что новые лиганды более конформационно лабильны по сравнению полученными ранее макроциклами. Это позволяет рассчитывать на более эффективную подстройку геометрии новых макроциклов для связывания и разделения f-элементов. Результаты этого исследования опубликованы в Журнале Органической Химии. Продолжено углублённое изучение структуры и свойств макроциклов с пиперазиновыми линкерами, показавших высокие факторы селективности разделения пары Am(III)/Eu(III). Так, анализ кристаллической упаковки в кристаллах таких макроциклов выявил наличие пустот, которые могут быть заняты как молекулами растворителей, так и более объемными наполнителями, например, нитратами f-элементов. Методом динамического светорассеяния мы провели исследование самоагрегации таких макроциклов в среде различных растворителей и показали, что в зависимости от природы растворителя могут образовываться молекулярные ассоциаты с различным молекулярно-массовым распределением. Проведенные исследования обладают высокой фундаментальной ценностью, поскольку полученные результаты позволили достичь более глубокого понимания влияния различных факторов, влияющих на эффективность извлечения и селективного разделения f-элементов методом жидкостной экстракции, в том числе и для более хорошо изученных линейных 1,10-фенантролин-2,9-дикарбоксамидов. Результаты работы опубликованы в International Journal of Molecular Sciences (Q1). 2) Расширена библиотека макроциклических фенантролиндиамидов, содержащих в своём строении одно гетероциклическое ядро. Одной из сложностей получения таких объектов является синтез исходных диаминов с различной длиной углеводородного линкера между атомами азота. Нами были опробованы три ключевых подхода к синтезу таких диаминов. Подход, заключающийся в конденсации диаминоалкана и йодбензола в присутствии каталитических количеств CuI и пролина, оказался наиболее удобным и эффективным. В данном случае выход целевых диаминов достигает 80%. Диамины были введены в реакцию с ацилдихлоридами 1,10-фенантролин-2,9-дикарбоновой кислоты и 4,7-дихлор-1,10-фенантролиндикарбоновой кислоты, в результате чего были получены новые макроциклические фенантролиндиамиды, содержащие в своём строении один гетероароматический фрагмент. Таким образом, получены примеры новых макроциклических фенантролиндиамидов с размерами цикла от 15 до 18, в том числе макроцикл, содержащий гетероатом в строении линкера между амидными атомами азота. На примере 4,7-дихлорзамещённых макроциклических фенантролиндиамидов нами была показана возможность дальнейшей функционализации таких соединений в положения 4 и 7 гетероциклического остова. Так, хлорсодержащие 16-тичленные макроциклы были введены в реакцию с пирролидином, что позволило с выходами более 80% получить первые 4,7-бис-пирролидинзамещённые макроциклические 1,10-фенантролин-2,9-дикарбоксамиды. Проведены квантово-химические расчёты, нацеленные на выявление возможности использования макроциклических 1,10-фенантролин-2,9-дикарбоксамидов для связывания d-элементов. Оптимизированы структуры комплексов макроциклов с хлоридами магния, кальция, никеля, цинка и палладия. Результаты проведённых расчётов показали, что 18-тичленный макроцикл с наибольшей длиной углеводородного линкера показывает наилучшие значения в энергии связывания со всем рядом исследованных хлоридов металлов. наибольший выигрыш энергии достигается при образовании комплекса с хлоридом палладия. Исследована возможность использования макроциклических фенантролиндиамидов в качестве хемоселективных рецепторов для различных анионов. В данном случае наибольший интерес представляли макроциклы без фенильных заместителей при амидных атомах азота. Выяснено, что наибольший выигрыш энергии достигается при связывании таких макроциклов с фторид-анионом, при этом наилучшие значения наблюдаются для 18-тичленного макроцикла с наибольшей длиной углеводородного линкера. Таким образом, макроциклические фенантролиндиамиды являются перспективными хемосенсорами для связывания фторид-аниона. Результаты этой работы представлены в виде устного доклада на Международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов-2024". 2) Продолжено углублённое изучение особенностей строения, координационной химии и экстракционных свойств фенилзамещённых бис-пирролидиндиамидных фенантролиновых лигандов, показавших на предыдущих стадиях исследования высокие коэффициенты распределения и факторы селективности разделения f-элементов. С помощью препаративной хроматографии получены индивидуальные диастереомеры лигандов. Строение каждой из диастереомерных форм лигандов было однозначно подтверждено комбинацией спектральных методов и рентгеноструктурного анализа. Проведены экстракционные тесты, показавшие очень высокую эффективность лигандов в разделении Am(III) и лантаноидов от La до Er. Для поздних лантаноидов наблюдается сильный рост экстракционной эффективности. Изучена координационная химия различных диастереомерных форм лигандов, в частности, проведено УФ-вид спектрофотометрическое титрование лигандов нитратами лантаноидов. Это позволило количественно определить константны устойчивости комплексов различной стехиометрии лиганд:металл. Получены кристаллы комплексов различных диастереомерных форм лигандов с нитратами некоторых лантаноидов, их структура исследована методом рентгеноструктурного анализа. Обнаружено, что комплексы с лантаноидами от лантана до диспрозия имеют типичное строение, в то время как комплексы с поздними лантаноидами, в частности, с иттербием и лютецием, в кристалле обнаруживают стехиометрию состава L2M2, при этом в отличие от нейтральных комплексов с ранними лантаноидами они представляют собой ионные пары, в которых комплексный катион [L2M]3+ уравновешен металлсодержащим анионом, например, пентанитратом иттербия [Yb(NO3)5]2- и ещё одним нитрат-анионом. Таким образом, высокая эффективность фенилзамещённых пирролидиндиамидных лигандов в отношении извлечения поздних лантаноидов при проведении жидкость-жидкостной экстракции объясняется образованием комплексных катионов [L2M]3+, уравновешенных металлсодержащими анионами. Выяснено, что диастереомерия оказывает существенное влияние на экстракционные показатели, при этом мезо-форма в целом оказывается более эффективной по сравнению с рацемической. Экспериментальные результаты дополнительно подтверждены данными квантово-химического моделирования. Результаты этой работы представлены в виде устного доклада на Всероссийской научной школе-конференции «Марковниковские Чтения» (2024 год, Красновидово). Библиотека 1,10-фенантролиндиамидов, содержащих асимметрические центры в амидных заместителях, была значительно расширена. Так, получены новые примеры лигандов с циклическими амидными фрагментами, содержащими арильные заместители в альфа-положении цикла пирролидина либо пиперидина. Арильные заместители отличаются количеством и разветвленностью алкильных групп, связанных с бензольным кольцом, либо могут содержать атом фтора. Некоторые из полученных лигандов разделены на диастереомерные формы, продолжается исследование особенностей их строения и экстракционных свойств. 3) 2,9-дихлор-1,10-фенантролин наработан в количестве более 25 граммов, и на его основе реакцией Pd-катализируемого кросс-сочетания с лактамами и анилидами синтезированы в необходимых количествах 9 лигандов нового типа, в которых координационные центры инвертированы по сравнению с «классическими» фенантролиндиамидами. Строение всех полученных лигандов подтверждено совокупностью спектральных методов и данными РСА. Были получены комплексные соединения с нитратами некоторых лантаноидов, в ряде случаев их строение удалось однозначно подтвердить методом рентгеноструктурного анализа. В случае комплексов лигандов нового типа с нитратами РЗЭ наблюдается заметный выход металла из плоскости фенантролина, что отличается от комплексов нитратов РЗЭ с «классическими» фенантролиндиамидами. Данные экстракционного тестирования показали, что лиганды нового типа существенно проигрывают в эффективности связывания f-элементов по сравнению с «классическими» 1,10-фенантролин-2,9-дикарбоксамидами. Проведены квантово-химические расчёты и оптимизированы структуры комплексных катионов лигандов нового типа с некоторыми d-элементами, в частности, с никелем, цинком и палладием. Показано, что в случае комплексов с выбранными d-элементами выход металла из плоскости фенантролина существенно меньше по сравнению с тем, что наблюдается в РСА-структуре комплекса с европием. Таким образом, геометрия лигандов нового типа является более подходящей для связывания d-элементов. 4) Изучены синтетические подходы к несимметричным лигандам на основе 1,10-фенантролина, содержащим в 4 и 7 положениях две различные группы в одной молекуле. С этой целью синтезирован ряд 4,7-дихлор-1,10-фенантролиндиамидов и осуществлено нуклеофильное замещение атомов хлора на фтор. Выяснено, что присутствие влаги приводит к образованию несимметричных 4-оксо-7-фтор-1,10-фенантролин-2,9-дикарбоксамидов в качестве побочных продуктов. При строгом дозировании количества воды такие несимметричные диамиды являются мажорными продуктами, и их выход в ряде случае достигает 80%. Исследована координационная химия таких соединений в реакциях комплексообразования с нитратами РЗЭ, а также проведены сравнительные экстракционные тесты по разделению лантаноидов и америция. В случае 4,7-дифторзамещённого лиганда ранние лантаноиды (например, La и Ce) экстрагируются лучше, значение D(La) составляет более 1000, далее экстракционная способность снижается во всём ряду РЗЭ. В случае 4-оксо-7-фтор-змещённого лиганда на графике присутствует излом для Gd-Tb. Вместе с этим, экстракционная способность фтор-оксо лиганда снижена на несколько порядков по сравнению дифторсодержащим лигандом. Таким образом, замещение как минимум одного из атомов галогена на гидроксильную группу приводит к существенному подавлению экстракционных свойств. Объяснение этому факту найдено с привлечением инструментов квантово-химического моделирования в совокупности с анализом данных РСА для лигандов и их комплексных соединений с нитратами РЗЭ. Выяснено, что 4-оксо-7-фторсодержащему лиганду для образования комплекса требуется не только преодолеть энергию предорганизации амидных заместителей для принятия нужной конформации в комплексе, но также преодолеть энергию таутомерного перехода из оксо-таутомерной формы в менее выгодную гидрокси-форму. Энергия такого перехода по данным проведённых расчётов может достигать 6 ккал/моль. Результаты этой работы опубликованы в журнале Inorganic Chemistry (Q1), а также представлены в виде устного доклада на Всероссийской научной конференции "Марковниковские чтения: Органическая химия от Марковникова до наших дней", (WSOC 2023, Домбай, Россия, 1-5 июня 2023). Раскрыт синтетический потенциал нуклеофильного замещения атомов фтора, связанных с фенантролиновым остовом. В первую очередь на примере модельного 4,7-дифторзамещённого лиганда исследован кислотный гидролиз по связям C-F. Выяснено, что оба атома фтора замещаются на гидроксильные группы за 20 часов при температуре 30оС, давая в результате соответствующий 4,7-диоксилиганд, структура которого была однозначно подтверждена данными РСА. 4,7-Дифтор-1,10-фенантролин-2,9-диамиды вовлечены в реакцию и с другими нуклеофилами, в том числе с азидо-группой, что позволило получить серию новых 4,7-функционализированных 1,10-фенантролин-2,9-диамидов На основе 4-оксо-7-фторзамещённых фенантролиндиамидов осуществлен синтез широкого ряда 4,7-дифункциональных производных 1,10-фенантролин-2,9-диамидов. Так, атом фтора может быть не только подвергнут кислотному гидролизу, но также в мягких условиях может быть замещен на нитрильную группу, N-пирролидинил либо на азидную группу, давая соответствующие несимметрично-замещённые 1,10-фенантролин-2,9-диамиды с выходами до 94%. Для азидозамещённых производных проведены серии химических превращений, характерных для азидогруппы, в частности, азид-алкиновое [3+2]-циклоприсоединение и реакция Штаудингера Разработан общий подход к синтезу 4,7-функционализированных фенантролиндикарбоксамидов как симметричного, так и несимметричного строения. По результатам данной части исследования успешно защищена диссертация на соискание учёной степени кандидата химических наук по специальности 1.4.3 Органическая химия. 5) Получена линейка 2,9-бис-аминопроизводных 1,10-фенантролина, которые могут выступать в качестве удобных объектов сравнения с 1,10-фенантролин-2,9-дикарбоксамидами и тетрадентатными лигандами нового типа, в которых координационные центры инвертированы по сравнению с «классическими» фенантролиндиамидами. 6) Завершена работа над детальным исследованием структуры комплексов нитратов РЗЭ с модельными N,N,N’,N’-тетрабутилдикарбоксамидами 1,10-фенантролин-2,9-дикарбоновой кислоты. Результаты работы опубликованы в журнале Polyhedron. |
Для прикрепления результата сначала выберете тип результата (статьи, книги, ...). После чего введите несколько символов в поле поиска прикрепляемого результата, затем выберете один из предложенных и нажмите кнопку "Добавить".
№ | Имя | Описание | Имя файла | Размер | Добавлен |
---|