Some properties of eigenfunctions of a fourth-order differential operator with discontinuous coefficients. (Russian)статья

Информация о цитировании статьи получена из Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 16 января 2019 г.

Работа с статьей


[1] Budak A. B. Some properties of eigenfunctions of a fourth-order differential operator with discontinuous coefficients. (russian) // Differential Equations. — 1981. — Vol. 16, no. 11. — P. 1233–1242. The author considers the problem of eigenvalues and eigenfunctions of the operator Lu = (pu′′)′′ +(ru′)′ + qu, which is defined on an interval (a,b). The functions p, r, q are smooth functions in (a,b){x0} where x0 is a fixed point of the interval (a,b). The author proves the formula for the mean value, with center at the point x0, of the eigenfunction u which corresponds to the eigenvalue λ, and gives the estimate sum n=1 +infty (u2(x))n/(sqrt[4](lambda n))(1+delta) = O(1) forall delta > 0. This estimate is uniform in x on every compactum in (a,b).

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть