## Numerical Simulations of Boundary Layer Problemsстатья

Информация о цитировании статьи получена из Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 28 октября 2016 г.
• Авторы:
• Журнал: Mathematical Models and Computer Simulations
• Том: 8
• Номер: 4
• Год издания: 2016
• Первая страница: 341
• Последняя страница: 347
• DOI: 10.1134/S2070048216040037
• Аннотация: Boundary layers often appear at the interface of two media. A typical example is the singularly perturbed Helmholz equation. It is shown that the modern finite difference methods solve such problems with a high efficiency under an appropriate choice of the grid. A convergence verification procedure is proposed that does not require majorant estimation. A superfast algorithm yielding an a posteriori asymptotically precise error estimate is described and a quasi-uniform rectangular grid reflecting in detail all the segments of the solution is proposed. The algorithm guarantees good precision even on the moderate grids having N~200 points in each direction. This algorithm is implemented in MATLAB.
• Добавил в систему: Белов Александр Александрович

### Работа с статьей

 [1] Belov A. A., Kalitin N. N. Numerical simulations of boundary layer problems // Mathematical Models and Computer Simulations. — 2016. — Vol. 8, no. 4. — P. 341–347. Boundary layers often appear at the interface of two media. A typical example is the singularly perturbed Helmholz equation. It is shown that the modern finite difference methods solve such problems with a high efficiency under an appropriate choice of the grid. A convergence verification procedure is proposed that does not require majorant estimation. A superfast algorithm yielding an a posteriori asymptotically precise error estimate is described and a quasi-uniform rectangular grid reflecting in detail all the segments of the solution is proposed. The algorithm guarantees good precision even on the moderate grids having N∼200 points in each direction. This algorithm is implemented in MATLAB. [ DOI ]