Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein. Part II: Quasielastic Neutron Scatteringстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 11 декабря 2019 г.

Работа с статьей

Прикрепленные файлы


Имя Описание Имя файла Размер Добавлен
1. Полный текст JPCB_2019_2.pdf 2,6 МБ 10 декабря 2019 [emaksimoff]

[1] Solution structure and conformational flexibility in the active state of the orange carotenoid protein. part ii: Quasielastic neutron scattering / M. Golub, M. Moldenhauer, F.-J. Schmitt et al. // Journal of Physical Chemistry B. — 2019. — Vol. 123, no. 45. — P. 9536–9545. Orange carotenoid proteins (OCPs), which are protecting cyanobacterial light-harvesting antennae from photodamage, undergo a pronounced structural change upon light absorption. In addition, the active state is anticipated to boost a significantly higher molecular flexibility similar to a molten globule state. Here, we used quasielastic neutron scattering to directly characterize the vibrational and conformational molecular dynamics of OCP in its ground and active states, respectively, on the picosecond time scale. At a temperature of 100 K, we observe mainly (vibronic) inelastic features with peak energies at 5 and 6 meV (40 and 48 cm-1, respectively). At physiological temperatures, however, two (Lorentzian) quasielastic components represent localized protein motions, that is, stochastic structural fluctuations of protein side chains between various conformational substates of the protein. Global diffusion of OCP is not observed on the given time scale. The slower Lorentzian component is affected by illumination and can be well-characterized by a jump-diffusion model. While the jump diffusion constant D is (2.82 ± 0.01) × 10-5 cm2/s at 300 K in the ground state, it is increased by 20% to (3.48 ± 0.01) × 10-5 cm2/s in the active state, revealing a strong enhancement of molecular mobility. The increased mobility is also reflected in the average atomic mean square displacement (u2) we determine a (u2) of 1.47 ± 0.05 Å in the ground state, but 1.86 ± 0.05 Å in the active state (at 300 K). This effect is assigned to two factors: (i) the elongated structure of the active state with two widely separated protein domains is characterized by a larger number of surface residues with a concomitantly higher degree of motional freedom and (ii) a larger number of hydration water molecules bound at the surface of the protein. We thus conclude that the active state of the orange carotenoid protein displays an enhanced conformational dynamics. The higher degree of flexibility may provide additional channels for nonradiative decay so that harmful excess energy can be more efficiently converted to heat. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть