Measurement of density, temperature, and electrical conductivity of a shock-compressed nonideal nitrogen plasma in the megabar pressure rangeстатья
Информация о цитировании статьи получена из
Scopus,
Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 1 октября 2016 г.
Аннотация:Kinematic and thermodynamic parameters of shock-compressed liquid nitrogen are measured behind the front of a plane shock wave using plane wave and hemispherical shock wave generators. In these experiments, high values of compression parameters (shock-compressed hydrogen density? a parts per thousand 3.25 g/cm(3) and temperature Ta parts per thousand 56000 K at a pressure of P a parts per thousand 265 GPa) are attained. The density, pressure, temperature, and electrical conductivity of the nonideal plasma of shock-compressed liquid nitrogen are measured. A nearly isochoric behavior of the nitrogen shock adiabat is observed in the pressure range P = 100-300 GPa. The thermodynamics of shock-compressed nitrogen is an alyzed using the model of the equation of state in the quasi-chemical representation (SAHA code) as well as the semiempirical wide-range equation of state developed at the Institute of Experimental Physics. Experimental results are interpreted on the basis of calculations as the fixation of the boundary of transition of shock-compressed nitrogen from the polymer phase to the state of a strongly nonideal plasma at P a parts per thousand 100 GPa, ? a parts per thousand 3.4 g/cm(3).