Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interactionстатья

Информация о цитировании статьи получена из Scopus, Web of Science
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 27 ноября 2016 г.

Работа с статьей


[1] Influence of ph and ionic strength on electrostatic properties of ferredoxin, fnr, and hydrogenase and the rate constants of their interaction / A. N. Diakonova, S. S. Khrushchev, I. B. Kovalenko et al. // Physical Biology. — 2016. — Vol. 13, no. 5. — P. 056004. Ferredoxin (Fd) protein transfers electrons from photosystem I (PSI) to ferredoxin:NADP+-reductase (FNR) in the photosynthetic electron transport chain, as well as other metabolic pathways. In some photosynthetic organisms including cyanobacteria and green unicellular algae under anaerobic conditions Fd transfers electrons not only to FNR but also to hydrogenase—an enzyme which catalyzes reduction of atomic hydrogen to H2. One of the questions posed by this competitive relationship between proteins is which characteristics of thylakoid stroma media allow switching of the electron flow between the linear path PSI-Fd-FNR-NADP+ and the path PSI-Fd-hydrogenase-H2. The study was conducted using direct multiparticle simulation approach. In this method protein molecules are considered as individual objects that experience Brownian motion and electrostatic interaction with the surrounding media and each other. Using the model we studied the effects of pH and ionic strength (I) upon complex formation between ferredoxin and FNR and ferredoxin and hydrogenase. We showed that the rate constant of Fd-FNR complex formation is constant in a wide range of physiologically significant pH values. Therefore it can be argued that regulation of FNR activity doesn't involve pH changes in stroma. On the other hand, in the model rate constant of Fd-hydrogenase interaction dramatically depends upon pH: in the range 7–9 it increases threefold. It may seem that because hydrogenase reduces protons it should be more active when pH is acidic. Apparently, regulation of hydrogenase's affinity to both her reaction partners (H+ and Fd) is carried out by changes in its electrostatic properties. In the dark, the protein is inactive and in the light it is activated and starts to interact with both Fd and H+. Therefore, we can conclude that in chloroplasts the rate of hydrogen production is regulated by pH through the changes in the affinity between hydrogenase and ferredoxin. [ DOI ]

Публикация в формате сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл сохранить в файл скрыть