Recent advances and applications of synthetic diamonds in solid-phase extraction and high-performance liquid chromatographyстатьяИсследовательская статья
Статья опубликована в высокорейтинговом журнале
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 9 апреля 2021 г.
Аннотация:Since the advent of diamond-based adsorbents in the late 1960s, the interest in their use for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) has steadily increased. This is pri- marily due to their unique properties, such as extreme chemical and thermal stability, high mechani- cal strength and biocompatibility, and complex mixed-mode retention mechanisms. Currently, the most commonly used synthetic diamonds in SPE and HPLC are detonation nanodiamonds (DND), high-pressure high-temperature (HPHT) diamonds, and chemical vapour deposition (CVD) diamonds. These diamonds have been either used as individual particles (in both modified and unmodified forms), or for surface modification, or entrapped within composites and core-shell particles to develop new diamond-based ad- sorbents. These diamond-based adsorbents have been used for a variety of applications, including stream- lined proteome analysis; extraction of anions, cations, actinides, uranium, lanthanides, alkaline earth met- als, transition metals, and post-transition metals; and development of reversed-phase, normal phase, hy- drophilic interaction, ion chromatography, and mixed-mode liquid chromatography columns, to name but a few. These varied applications of different types of diamonds are typically governed by their specific properties. This review discusses the various surface and bulk properties of DND, HPHT diamonds, and CVD diamonds that facilitate or limit their use in different SPE and HPLC based applications.