Аннотация:Полный двудольный граф K3,3, рассматриваемый как шарнирная конструкция в плоскости с шарнирами в вершинах и стержнями постоянной длины в качестве ребер, в общем случае допускает лишь движения как жесткого целого, т.е. является неизгибаемым. Два экзотических типа его изгибаемости были найдены в 1899 г. Диксоном. С тех пор в ряде работ различных авторов вопрос об изгибаемости в плоскости полных двудольных графов Km,n был решен почти для всех пар (m,n). В настоящей работе этот вопрос решен для всех полных двудольных графов как в евклидовой плоскости, так и на плоскости Лобачевского, и на сфере. Даны полные и независимые от предыдущих работ доказательства без сложных компьютерных вычислений, схожие во всех трех случаях: евклидовом, гиперболическом и сферическом.