Аннотация:The m.13513G>A (p.Asp393Asn) substitution in the MT-ND5 (Mitochondrially Encoded NADH/Ubiquinone Oxidoreductase Core Subunit 5) gene is a common pathogenic variant associated with primary mitochondrial disorders. It frequently causes Leigh syndrome and mitochondrial encephalomyopathy with lactate acidosis and stroke-like episodes (MELAS). In this study, we present clinical data, heteroplasmy levels in various tissues (blood, urine, and skin fibroblasts), and bioenergetic characteristics from a cohort of 20 unrelated patients carrying the m.13513G>A mutation, classified according to the following phenotypes: Leigh syndrome (n = 12), MELAS (n = 2), and Leber’s hereditary optic neuropathy (LHON, n = 6). We observed a significant correlation between high respiratory ratios and heteroplasmy levels in fibroblast cell lines of the patients. Furthermore, fibroblast cell lines with heteroplasmy levels exceeding 55% exhibited markedly reduced mitochondrial membrane potential. These findings contribute to a better understanding of the clinical and bioenergetic profiles of patients with m.13513G>A-variant-related phenotypes across different heteroplasmy levels, based on data from a single genetic center. Our data suggest that even a slight shift in heteroplasmy can improve cellular function and, consequently, the patients’ phenotype, providing a solid foundation for the development of future gene therapies for mtDNA diseases.